Ocean and atmospheric tides standards (used for EIGEN gravity field modeling)

Richard Biancale (CNES/GRGS)

IERS Workshop on Conventions: 20-21 September 2007

Ocean tides modeling

The height of ocean tides is expressed by a sum over n waves :

$$\xi(\varphi\lambda t) = \sum_{n} Z_{n}(\varphi\lambda) \cos(\theta_{n}(t) - \psi_{n}(\varphi\lambda))$$

 Z_n is the amplitude of the wave n,

 ψ_n is the phase

 θ_n is the Doodson argument which is expressed in linear combination of 6 variables :

$$\theta_n(t) = n_1 \tau + (n_2 - 5)s + (n_3 - 5)h + (n_4 - 5)p + (n_5 - 5)N' + (n_6 - 5)p_s$$

These 6 variables with decreasing frequencies represent the fundamental arguments according to the Sun and Moon motions :

- τ : angle of the mean lunar day (1.03505 d)
- s : angle of the mean tropic month (27.32158 d)
- h : angle of the mean tropic year (365.2422 d)
- p : angle of the mean lunar perigee (8.8473 y)
- N° : angle of the mean lunar node (18.6129 y)
- p_s : angle of the perihelion (20940.28 y)

 n_1 (= 0, 1, 2, 3...) defines the specie (long period, diurnal, semi-diurnal, ter-diurnal...), n_2 the group (in general :1 $\leq n_2 \leq 9$) and n_3 the constituent (1 $\leq n_3 \leq 9$).

The amplitude (Z_n) and phase (ψ_n) of the different waves of tides represented by cotidal maps can be expanded in spherical harmonic functions of $Z_n \cos \psi_n$ and $Z_n \sin \psi_n$:

$$\begin{cases} Z_n \cos \psi_n = \sum_l \sum_m (a_{n,lm} \cos m\lambda + b_{n,lm} \sin m\lambda) P_{lm} (\sin \varphi) \\ Z_n \sin \psi_n = \sum_l \sum_m (c_{n,lm} \cos m\lambda + d_{n,lm} \sin m\lambda) P_{lm} (\sin \varphi) \end{cases}$$

Then we have : $\xi(\varphi, \lambda, t) = \sum_{n} (Z_{n} \cos \psi_{n} \cos \theta_{n} + Z_{n} \sin \psi_{n} \sin \theta_{n})$ $= \sum_{n} \sum_{l} \sum_{m} \left[\frac{\frac{a_{n,lm} - d_{n,lm}}{2} (\cos m\lambda \cos \theta_{n} - \sin m\lambda \sin \theta_{n})}{2} + \frac{a_{n,lm} + d_{n,lm}}{2} (\cos m\lambda \cos \theta_{n} + \sin m\lambda \sin \theta_{n})}{2} + \frac{c_{n,lm} + b_{n,lm}}{2} (\cos m\lambda \sin \theta_{n} + \sin m\lambda \cos \theta_{n})} + \frac{c_{n,lm} - b_{n,lm}}{2} (\cos m\lambda \sin \theta_{n} - \sin m\lambda \cos \theta_{n})} \right] P_{lm}(\sin \varphi)$

Writing :

$$C_{n,lm}^{+} = \frac{a_{n,lm} - d_{n,lm}}{2} \quad , \quad C_{n,lm}^{-} = \frac{a_{n,lm} + d_{n,lm}}{2} \quad and \quad S_{n,lm}^{+} = \frac{c_{n,lm} + b_{n,lm}}{2} \quad , \quad S_{n,lm}^{-} = \frac{c_{n,lm} - b_{n,lm}}{2}$$

,

the height of tide becomes : $\left| \xi(\varphi, \lambda, t) = \sum_{n} \sum_{l} \sum_{m} P_{lm}(\sin \varphi) \sum_{+} \left[C_{n,lm}^{\pm} \cos(\theta_n + \chi_n \pm m\lambda) + S_{n,lm}^{\pm} \sin(\theta + \chi_n \pm m\lambda) \right] \right|$

Procedure

- # reading the point grid by *lec grille(quart) degre* # converting by gpgm2; point grid C \rightarrow mean grid C # converting by *analhs*; mean grid $C \rightarrow a_{lm}, b_{lm}$ harmonics # converting by gpgm2; point grid S \rightarrow mean grid S # converting by *analhs*; mean grid $S \rightarrow c_{lm}, d_{lm}$ harmonics # converting by *convers_hs*; $(a_{lm}, d_{lm})/(b_{lm}, c_{lm})$ harmonics $\rightarrow C_{lm}^{\pm}/(b_{lm}, c_{lm})$ S_{lm}^{\pm} ocean tides harmonics
- # applying by *cor_ellips* the ellipsoidal correction

FES2004

Ocean tide model: FES2004 normalized model (fev. 2004) up to (100,100) in cm (long period from FES2002 up to (50,50) + equilibrium Om1/Om2, atmospheric tide NOT included) Doodson 1 m Csin+ Ccos+ Csin-Ccos-C+eps+ Ceps-55.565 Om1 2 0 -0.540594 0.000000 0.000000 0.000000 0.5406 270.000 0.0000 0.000 55.575 Om2 2 0 -0.005218 0.000000 0.000000 0.000000 0.0052 270.000 0.0000 0.000 2 0 -0.046604 -0.000903 0.000000 0.000000 0.0466 268 890 0.0000 0.000 56.554 Sa 2 0 -0.296385 -0.010794 0.2966 267.914 0.0000 57.555 Ssa 0.000000 0.000000 0.000 65.455 Mm 2 0 -0.479140 -0.084083 0.000000 0.000000 0.4865 260.047 0.0000 0.000 75.555 Mf 2 0 -0.805539 -0.236132 0.000000 0.000000 0.8394 253.662 0.0000 0.000 85.455 Mtm 2 0 -0.139082 -0.049418 0.000000 0.000000 0.1476 250.439 0.0000 0.000 93.555 Msq 2 0 -0.019391 -0.006674 0.000000 0.000000 0.0205 251.008 0.0000 0.000 135.655 01 -0.291290 0.3081340.049563 -0.203915 0.4240 316.610 0.2099 166.339 2 1 145.555 01 -1.480706 1.3830720.455121 -0.792480 2.0262 313.047 0.9139 150.131 2 1 163.555 P1 2 1 -0.505544 0.551083 0.279251 -0.259244 0.7478 317.468 0.3810 132.872 165.555 K1 2 1 -1.530097 1.660923 0.845110 -0.785011 2.2583 317.348 1.1535 132.889 235.755 2N2 2 2 -0.044241 0.134832 0.020987 -0.001671 0.1419 341.834 0.0211 94.552 245.655 N2 2 2 -0.577967 0.958489 0.162389 0.009450 1.1193 328.910 0.1627 86.670 255.555 M2 2 2 -3.233275 3.840723 0.786314 0.430793 5.0205 319.908 0.8966 61.283 273.555 S2 2 2 -1.288610 1.293664 0.040901 0.419782 1.8259 315 112 0.4218 5.565 275.555 K2 -0.000662 0.114679 0.4927 316.737 0.1147 359.669 2 2 -0.337696 0.358821

455.555 M4 4 4 -0.000551 -0.003144 0.001155 -0.002202 0.0032 189.949 0.0025 152.313

LAGEOS ocean tides fit over 19 y (normalized coefficients) :

		LA	LAGEOS		8-2004	difference		
darw	1	m	C ⁺ (cm)	$\epsilon^+(deg)$	C ⁺ (cm)	$\epsilon^+(deg)$	$\Delta C^{+}(\%)$	$\Delta \epsilon^{+}$ (%)
Ω_1	2	0	0.4387	223.72	0.5406	270.00	19.	26.
Ω_2	2	0	0.3206	125.05	0.0052	270.00	6044.	80.
Sa	2	0	0.5800	26.61	0.0466	268.89	1144.	65.
Ssa	2	0	0.7390	277.17	0.2966	267.91	149.	5.
	darw Ω_1 Ω_2 Sa Ssa	darw 1 Ω_1 2 Ω_2 2 Sa 2 Ssa 2 Ssa 2	$\begin{array}{cccccccc} darw & 1 & m \\ \mathbf{\Omega}_{1} & 2 & 0 \\ \mathbf{\Omega}_{2} & 2 & 0 \\ Sa & 2 & 0 \\ Ssa & 2 & 0 \end{array}$	$\begin{array}{c ccccc} & & & & & & & & \\ \mbox{darw} & 1 & m & C^+(cm) \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LAGEOSFESdarw1mC ⁺ (cm) ε^+ (deg)C ⁺ (cm) Ω_1 200.4387223.720.5406 Ω_2 200.3206125.050.0052Sa200.580026.610.0466Ssa200.7390277.170.2966	LAGEOSFES-2004darw1mC ⁺ (cm) ε^+ (deg)C ⁺ (cm) ε^+ (deg) Ω_1 200.4387223.720.5406270.00 Ω_2 200.3206125.050.0052270.00Sa200.580026.610.0466268.89Ssa200.7390277.170.2966267.91	LAGEOSFES-2004diffedarw1mC ⁺ (cm) ε^+ (deg)C ⁺ (cm) ε^+ (deg) ΔC^+ (%) Ω_1 200.4387223.720.5406270.0019. Ω_2 200.3206125.050.0052270.006044.Sa200.580026.610.0466268.891144.Ssa200.7390277.170.2966267.91149.

 Ω_{2} , Sa and Ssa results are not to be considered in terms of tides but more probably in terms of mass displacement

Décomposition harmonique du spectre de marée (pour la base de données pélagiques ST95)

Onde	Pourcentage
	d'importance
M_2	33,5%
S_2	12,6%
K_{l}	10,1%
O_l	7,0%
N_2	6,8%
K_2	3,3%
Q_I	1,5%
$2N_2$	1,0%
Total	75,9%

Pourcentage d'importance des principales ondes du spectre (source : thèse F. Lefèvre)

Nom	Nombre	Argument de	Coef.	Fréquence	Fréquence	Période	Orig
de	de	Doodson	harm.	(°/h)	(rad/s)	(jours)	ine
Darwin	Doodson		α_{i}				
M_0	055.555	-	0,50458	0		-	L
$S_{ heta}$	055.555	-	0,23411	0		-	S
S_a	056.554	$h - p_1$	0,01176	0,0410667	0,0000001991	365,2594	S
S_{sa}	057.555	2h	0,07287	0,0821373	0,000003982	182,6211	S
S_{ta}	058.554	$3h - p_1$	0,00427	0,1232040	0,000005973	121,7493	S
M_{sm}	063.655	s-2h+p	0,01578	0,4715211	0,0000022860	31,8119	L
M_m	065.455	s-p	0,08254	0,5443747	0,0000026392	27,5546	L
M_{sf}	073.555	2s-2h	0,01370	1,0158958	0,0000049252	14,7653	L
M_{f}	075.555	2s	0,15642	1,0980331	0,0000053234	13,6608	L
M_{stm}	083.655	3s-2h+p	0,00569	1,5695548	0,0000076094	9,5569	L
M_{tm}	085.455	3s-p	0,02995	1,6424078	0,0000079626	9,1329	L
M_{sqm}	093.555	4s-2h	0,00478	2,1139288	0,0000102486	7,0958	L
$2Q_1$	125.755	$\tau - 3s + 2p$	0,00955	12,8442862	0,0000622709	1,1678	S
σ_l	127.555	$\tau - 3s + 2h$	0,01153	12,9271398	0,0000626725	1,1603	L
Q_I	135.655	$\tau - 2s + p$	0,07216	13,3986609	0,0000649585	1,1195	S
$ ho_l$	137.455	$\tau - 2s + 2h + p$	0,01371	13,4715145	0,0000653117	1,1135	L
O_I	145.555	$\tau - s$	0,37689	13,9430356	0,0000675977	1,0758	L
$ au_{l}$	147.555	$\tau - s + 2h$	0,00491	14,0251729	0,0000679960	1,0695	
M_{11}	155.655	$\tau + p$	0,02964	14,4966939	0,0000702820	1,0347	L
M_{12}	155.655	$\tau + p$	0,01040	14,4874103	0,0000702369	1,0295	L
χ_1	157.455	$\tau + 2n - p$	0,00566	14,5695476	0,0000706352	1,0295	L
π_l	162.556	$\tau + s - 3h + p_1$	0,01029	14,91/864/	0,0000/23238	1,0055	5
P_1	163.555	$\tau + s - 2h$	0,17554	14,9589314	0,0000725229	1,0027	S
K_1 V^S	165.555	$\tau + s$	0,36233	15,0410686	0,0000729212	0,9973	L S
	166 554	i+s	0,10817	15,0410080	0,0000729212	0,9973	S
ψ_{l}	167 555	$i + s + n + p_1$	0,00756	15,0021555	0,0000731203	0,0010	S
φ_l	107.555	$\tau + 3 + 2n$ $\tau + 2n$ $2h + n$	0,00756	15,1252059	0,0000752072	0,9919	I I
θ_l	175.055	$\tau + 2s - 2n + p$	0,00500	15 5854433	0,0000755604	0,9070	I
so	192 455	$\tau + 2s p$	0,02754	16.0560644	0,0000778464	0,024	I
OO_{I}	185 655	$\tau + 3s - 2n$ $\tau + 3s + N'$	0,00492	16 1391017	0,00007782446	0,9342	L I
<i>V</i>	195 455	$\tau + 4s - n$	0.00311	16 6834764	0.0000808838	0,9294	Ľ
	227.655	$\frac{2\tau - 2s + 2p + N'}{2\tau - 2s + 2p + N'}$	0.00671	27.3416964	0.0001325563	0.5486	
$2N_2$	235.755	$2\tau - 2s + 2p$	0,02301	27,8953548	0,0001352405	0,5363	L
ц _р	237.555	$2\tau - 4s + 4h$	0.02777	27,9682084	0.0001355937	0.5363	L
N_2	245.655	$2\tau - s + p$	0,17387	28,4397295	0,0001378797	0,5274	L
V2	247.455	$2\tau - s + 2h - p$	0,03303	28,512583	0,0001382329	0,5261	L
M_2	255.555	2τ	0.90812	28,9841042	0.0001405189	0.5175	L
λ_2	263.655	$2\tau - s - 2h + p$	0,00670	29,4556253	0,0001428049	0,5092	L
L_2	265.455	$2\tau + s - p$	0,02567	29,5284700	0,0001431580	0,5078	L
T_2	272.556	$2\tau + 2s - 3h + p_1$	0,02479	29,5589333	0,0001433058	0,5075	S
S_2	273.555	$2\tau + 2s - 2h$	0,42286	30,0000000	0,0001454441	0,5000	S
R_2	274.554	$2\tau + 2s - h - p$	0,00354	30,0410667	0,0001456432	0,4993	S
K_2^S	275.555	$2\tau + 2s$	0,03648	30,0821373	0,0001458423	0,4986	S
$\tilde{K_2^L}$	275.555	$2\tau + 2s$	0,07858	30,0821373	0,0001458423	0,4986	L

Principales composantes extraites du développement de Doodson (source : thèse F. Lefèvre)

Admittance function

The admittance function is defined for each wave as the ratio between the potential generating tides and the ocean response :

$$G_n(\varphi,\lambda) = \frac{\xi_n(\varphi,\lambda,t)}{U_n(\varphi,\lambda,t)} \quad \text{with} \quad U_n = gH_nY_2^{n_l}(\varphi,\lambda) \begin{bmatrix} I \\ -i \end{bmatrix}_{n_l \text{ odd}}^{n_l \text{ even}} e^{i\theta_l}$$

The behavior of the admittance function is smooth in frequency so that it can be interpolated linearly between 2 main waves of close frequencies $(\dot{\theta}_1 \text{ and } \dot{\theta}_2)$:

$$G(\dot{\theta}_{n}) = \frac{\dot{\theta}_{n} - \dot{\theta}_{1}}{\dot{\theta}_{2} - \dot{\theta}_{1}} G(\dot{\theta}_{2}) - \frac{\dot{\theta}_{n} - \dot{\theta}_{2}}{\dot{\theta}_{2} - \dot{\theta}_{1}} G(\dot{\theta}_{1}) \quad \text{with} \quad G(\dot{\theta}_{1}) = \frac{\xi_{1}}{U_{1}} \quad , \quad G(\dot{\theta}_{2}) = \frac{\xi_{2}}{U_{2}}$$

$$\xi_{n} = G(\dot{\theta}_{n}) U_{n} = \frac{\dot{\theta}_{n} - \dot{\theta}_{1}}{\dot{\theta}_{2} - \dot{\theta}_{1}} \frac{U_{n}}{U_{2}} \xi_{2} - \frac{\dot{\theta}_{n} - \dot{\theta}_{2}}{\dot{\theta}_{2} - \dot{\theta}_{1}} \frac{U_{n}}{U_{1}} \xi_{1}$$
O. Colombo, thesis of S Casotto, (198)

$$\begin{aligned} \xi_{n} &= \frac{\dot{\theta}_{n} - \dot{\theta}_{l}}{\dot{\theta}_{2} - \dot{\theta}_{l}} \cdot \frac{H_{n}}{H_{2}} \bigg\{ \cos(\theta_{n} - \theta_{2}) \sum_{\ell,m} P_{lm}(\sin\varphi) \sum_{+}^{-} \bigg[C_{\ell m}^{\pm} \cos(\theta_{2} + \chi_{2} \pm m\lambda) + S_{\ell m}^{\pm} \sin(\theta_{2} + \chi_{2} \pm m\lambda) \bigg] \\ &+ \sin(\theta_{n} - \theta_{2}) \sum_{\ell,m} P_{lm}(\sin\varphi) \sum_{+}^{-} \bigg[S_{\ell m}^{\pm} \cos(\theta_{2} + \chi_{2} \pm m\lambda) - C_{\ell m}^{\pm} \sin(\theta_{2} + \chi_{2} \pm m\lambda) \bigg] \bigg\} \\ &+ \frac{\dot{\theta}_{2} - \dot{\theta}_{n}}{\dot{\theta}_{2} - \dot{\theta}_{l}} \cdot \frac{H_{n}}{H_{1}} \bigg\{ \cos(\theta_{n} - \theta_{1}) \sum_{\ell,m} P_{lm}(\sin\varphi) \sum_{+}^{-} \bigg[C_{\ell m}^{\pm} \cos(\theta_{1} + \chi_{1} \pm m\lambda) + S_{\ell m}^{\pm} \sin(\theta_{1} + \chi_{1} \pm m\lambda) \bigg] \\ &+ \sin(\theta_{n} - \theta_{1}) \sum_{\ell,m} P_{lm}(\sin\varphi) \sum_{+}^{-} \bigg[S_{\ell m}^{\pm} \cos(\theta_{1} + \chi_{1} \pm m\lambda) - C_{\ell m}^{\pm} \sin(\theta_{1} + \chi_{1} \pm m\lambda) \bigg] \bigg\} \end{aligned}$$

Comparison of CHAMP orbits over 10 days with the one computed with P1 from FES2004

Orbit differences (mm)	3D	Radial	Normal	Tangential
without P1	144	10	247	36
P1 with admittance	3	1	4	2
admittance (65 waves)	90	16	74	135

ELLIPSOIDAL CORRECTIONS TO SPHERICAL HARMONICS OF SURFACE PHENOMENA GRAVITATIONAL EFFECTS

Georges Balmino CNES-GRGS 18, Av. Edouard Belin, 31401 TOULOUSE Cedex 9, France georges.balmino@cnes.fr

> Submitted September 19, 2003 To

Technical University of Graz Institut für Geodäsie

Special publication in honour of H. Moritz

$$H' = H(1 + \eta^{2}/2) \text{ with } \eta = \Phi - \varphi$$

$$\Phi - \varphi = e^{2} \left(1 - \frac{H}{R_{0}}\right) \sin \Phi \cos \Phi + e^{4} \left[1 - \frac{3}{2} \frac{H}{R_{0}} + \left(\frac{H}{R_{0}}\right)^{2}\right] \sin^{3} \Phi \cos \Phi$$

$$R_{E}(\varphi') = R_{0}(1 - \varepsilon_{2} \sin^{2} \varphi' + \varepsilon_{4} \sin^{4} \varphi' + ...)$$

$$(2 - \delta_{om})\overline{K}_{lm} = \overline{C}_{lm} - i \overline{S}_{lm}$$

$$\delta \overline{K}_{lm} = \alpha_{lm} \rho \iint_{R_{E}(\varphi')} r^{1/2} dr' \frac{1}{Y_{lm}} (\varphi', \lambda') d\sigma' \text{ with } \alpha_{lm} = \left[(2 - \delta_{0m})(2l + 1)MR^{l}\right]^{-1}$$
with $r' = R_{E}(\varphi') + H'(\varphi', \lambda')$ and $R_{E}(\varphi') = R_{0}(1 - \varepsilon_{2} \sin^{2} \varphi' + \varepsilon_{4} \sin^{4} \varphi' + ...)$

$$\left\{r^{1/43}/(l + 3)\right\}_{R_{E}}^{r} = R_{E}^{1/43}(\varphi')\left\{1 + \left[H'/R_{E}(\varphi')\right] + (l + 2)/2 \left[H'/R_{E}(\varphi')\right]^{2} + ... - R_{E}^{1/43}(\varphi')\right\}$$

$$\delta^{l} \overline{K}_{lm} = \alpha_{lm} \rho \iint_{\sigma_{1}} \left[R_{0}^{l+2}\left(1 - \varepsilon_{2} \sin^{2} \varphi' + \varepsilon_{4} \sin^{4} \varphi'\right)^{l+2} \sum_{n,k} \overline{h}_{nk} \overline{Y}_{nk}(\varphi', \lambda')\right] \cdot \overline{Y}_{lm}^{*}(\varphi', \lambda') d\sigma'$$

$$\delta^{l} \overline{K}_{lm} = -\beta_{l}(l + 2)\varepsilon_{2} \left[a_{l-2,m} \frac{\overline{h}_{l-2,m}}{R_{0}} + b_{lm} \frac{\overline{h}_{lm}}{R_{0}} + \overline{c}_{l+2,m} \frac{\overline{h}_{l+2,m}}{R_{0}}\right]$$

Ellipsoidal correction

Model 1: Ocean tide model: FES2004 normalized model (in cm)

Model 2: Ocean tide model: FES2004 normalized model with ellipsoidal correction (in cm)

			ma	odel 1	m	odel 2	2	2 - 1		
doodson darw	1	m	c+(cm)	eps+(deg)	c+(cm)	eps+(deg.)	diffe	erence	/ relat	ive(%)
255.555 M2	1	0	0.5888	40.8014	0.5885	39.9910	-0.0003	-0.8104	0.0	-0.5
255.555 M2	2	0	1.2812	180.4369	1.2766	180.0110	-0.0046	-0.4259	-0.4	-0.2
255.555 M2	3	0	1.4460	152.1206	1.4422	152.1420	-0.0038	0.0214	-0.3	0.0
255.555 M2	4	0	1.6966	295.4730	1.6952	295.3580	-0.0014	-0.1150	-0.1	-0.1
255.555 M2	5	0	1.2362	328.6181	1.2222	328.0520	-0.0140	-0.5661	-1.1	-0.3
255.555 M2	1	1	0.3929	140.8622	0.3979	141.2420	0.0050	0.3798	1.3	0.2
255.555 M2	2	1	1.0510	250.4822	1.0551	250.0190	0.0041	-0.4632	0.4	-0.3
255.555 M2	3	1	1.2578	345.4651	1.2555	346.4350	-0.0023	0.9699	-0.2	0.5
255.555 M2	4	1	2.3442	30.4333	2.3297	30.3530	-0.0145	-0.0803	-0.6	0.0
255.555 M2	5	1	3.5506	237.7274	3.5192	237.7810	-0.0314	0.0536	-0.9	0.0
255.555 M2	2	2	5.0115	319.9495	5.0205	319.9080	0.0090	-0.0415	0.2	0.0
255.555 M2	3	2	0.8508	171.8101	0.8549	172.0060	0.0041	0.1959	0.5	0.1
255.555 M2	4	2	4.7345	128.8852	4.7241	129.0010	-0.0104	0.1158	-0.2	0.1
255.555 M2	5	2	1.7639	9.9130	1.7569	9.9690	-0.0070	0.0560	-0.4	0.0
255.555 M2	3	3	3.2388	36.5296	3.2347	36.7060	-0.0041	0.1764	-0.1	0.1
255.555 M2	4	3	3.7611	178.5463	3.7461	178.4950	-0.0150	-0.0513	-0.4	0.0
255.555 M2	5	3	2.8611	295.8639	2.8309	295.7940	-0.0302	-0.0699	-1.1	0.0
255.555 M2	4	4	3.7494	302.6906	3.7439	302.6140	-0.0055	-0.0766	-0.1	0.0
255.555 M2	5	4	4.0702	49.1312	4.0430	49.1210	-0.0272	-0.0102	-0.7	0.0
255.555 M2	5	5	0.8065	70.9801	0.8011	70.6670	-0.0054	-0.3131	-0.7	-0.2

GRGS-GRACE tide model

Model 1 : Ocean tide model: **FES2004** normalized model (fev. 2004) up to (100,100) in cm (long period from FES2002 up to (50,50) + equilibrium Om1/Om2, atmospheric tide

Model 2 : OCEAN TIDES – from GRACE solution

			model 1	model 2	2 - 1			
doodson	1	m	c+(cm) eps+(deg)	c+(cm) eps+(deg	.) differen	nce /	relat	ive(%)
135.655 Q1	2	1	0.4240 316.6096	0.4603 313.7090	0.0363 -2	2.9006	8.6	-1.6
145.555 O1	2	1	2.0262 313.0474	1.9586 315.2550	-0.0676 2	2.2076	-3.3	1.2
163.555 P1	2	1	0.7478 317.4678	0.6771 316.2990	-0.0707 -1	.1688	-9.5	-0.6
165.555 K1	2	1	2.2583 317.3477	2.4783 323.8800	0.2200 6	5.5323	9.7	3.6
235.755 2N2	2	2	0.1419 341.8343	0.1484 338.2020	0.0065 -3	3.6323	4.6	-2.0
245.655 N2	2	2	1.1193 328.9101	1.1100 330.6140	-0.0093	1.7039	-0.8	0.9
255.555 M2	2	2	5.0205 319.9080	4.8235 321.1620	-0.1970 1	.2540	-3.9	0.7
273.555 S2	2	2	1.8259 315.1121	1.8941 309.9170	0.0682 -:	5.1951	3.7	-2.9
275.555 K2	2	2	0.4927 316.7372	0.2573 311.0220	-0.2354 -:	5.7152	-47.8	-3.2

Mean Annual and Seasonal Atmospheric Tide Models based on 3-hourly and 6-hourly ECMWF Surface Pressure Data

In Memory of Peter Schwintzer †

Richard Biancale

Groupe de Recherches de Géodésie Spatiale (GRGS), CNES Toulouse, France Sabbatical at GeoForschungsZentrum Potsdam (GFZ) September 2001 – December 2002

and

Albert Bode

Formerly GeoForschungsZentrum Potsdam Division 1: "Kinematics & Dynamics of the Earth", Potsdam, Germany (retired since May 1, 2002)

Temporal evolution of the geoid differences derived from the mean atmospheric tide models

based on 6h ECMWF pressure field data (1985-2002) for August 2, each 3h.

ECMWF derived atmospheric tides (Bode & Biancale,2003)						ECMWF derived atmospheric tides (Bode & Biancale,2003)						
normalized n	nod	lel (in 1	mbar)			normalized model (in mbar)						
Doodson Dar	W	l m	Csin+	Ccos+	C+ eps+	Doodson Da	rw	l m	Csin+	Ccos+	C+ eps+	
164.556 S1	0	0 -0.0)10427	0.004887	0.0115 295.112	273.555 S2	0	0 -0	0.001267	0.004729	0.0049 345.001	
164.556 S1	1	0 -0.0)11572	0.007151	0.0136 301.714	273.555 S2	1	0 0	.003017	-0.001218	0.0033 111.985	
164.556 S1	2	0 -0.0)21999	-0.019367	0.0293 228.641	273.555 S2	2	0 0	.046910	-0.110495	0.1200 156.997	
164.556 S1	3	0 -0.0)19447	-0.001090	0.0195 266.792	273.555 S2	3	0 0	.011240	0.003652	0.0118 72.000	
164.556 S1	1	1 0.2	11548	0.063876	0.2210 73.199	273.555 S2	1	1 0	.025133	-0.003030	0.0253 96.874	
164.556 S1	2	1 0.0	11431	0.014826	0.0187 37.633	273.555 S2	2	1 0	.011672	-0.022752	0.0256 152.842	
164.556 S1	3	1 -0.1	25362	-0.011301	0.1259 264.849	273.555 S2	3	1 -0	0.019507	0.009509	0.0217 295.988	
164.556 S1	4	1 0.0	06730	-0.015007	0.0164 155.846	273.555 S2	4	1 -0	0.004188	0.001154	0.0043 285.406	
164.556 S1	2	2 0.0	40451	0.052284	0.0661 37.728	273.555 S2	2	20	.283369	-0.468298	0.5474 148.822	
164.556 S1	3	2 -0.0)00839	0.024861	0.0249 358.067	273.555 S2	3	2 0	.009812	0.026639	0.0284 20.220	
164.556 S1	4	2 -0.0)27001	-0.014535	0.0307 241.706	273.555 S2	4	2 -0	.036313	0.070506	0.0793 332.750	
164.556 S1	5	2 0.0	01710	-0.002672	0.0032 147.382	273.555 S2	5	2 -0	0.004402	-0.002872	0.0053 236.878	
164.556 S1	3	3 -0.0)16213	-0.011110	0.0197 235.579	273.555 S2	3	3 0	.016795	0.005516	0.0177 71.818	
164.556 S1	4	3 -0.0)28287	0.015258	0.0321 298.342	273.555 S2	4	3 0	.003813	-0.000086	0.0038 91.292	
164.556 S1	5	3 -0.0)18513	-0.003835	0.0189 258.297	273.555 S2	5	3 -0	0.004878	0.006430	0.0081 322.815	
164.556 S1	6	3 -0.0)01229	-0.011130	0.0112 186.301	273.555 S2	6	3 0	.001879	0.001580	0.0025 49.940	
164.556 S1	4	4 -0.0)11813	0.026961	0.0294 336.339	273.555 S2	4	4 -0	0.015098	0.000828	0.0151 273.139	
164.556 S1	5	4 0.0	13651	-0.002437	0.0139 100.122	273.555 S2	5	4 0	.002428	0.008129	0.0085 16.630	
164.556 S1	6	4 0.0	05458	0.007862	0.0096 34.769	273.555 S2	6	4 -0	0.001503	0.000413	0.0016 285.365	
164.556 S1	7	4 -0.0)02848	0.010407	0.0108 344.695	273.555 S2	7	4 -0	0.004306	-0.001009	0.0044 256.812	
164.556 S1	5	5 -0.0)19909	0.031089	0.0369 327.365	273.555 S2	5	5 0	.009324	-0.000794	0.0094 94.867	
164.556 S1	6	5 0.0	34243	-0.001804	0.0343 93.016	273.555 S2	6	5 0	.000304	0.000524	0.0006 30.120	
164.556 S1	7	5 0.0	11923	0.001275	0.0120 83.896	273.555 S2	7	5 0	.003957	-0.000054	0.0040 90.782	
164.556 S1	8	5 -0.0)06841	-0.000462	0.0069 266.136	273.555 S2	8	5 0	.005283	0.001430	0.0055 74.854	

Sa

ECMWF derived atmospheric tides (Bode & Biancale,2003)	ECMWF derived atmospheric tides (Bode & Biancale,2003)						
normalized model (in mbar)	normalized model (in mbar)						
Doodson Darw 1 m Csin+ Ccos+ C+ eps+	Doodson Darw 1 m Csin+ Ccos+ C+ eps+						
56.554 Sa 0 0 -0.168856 -0.049683 0.1760 253.604	57.555 Ssa 0 0 0.026418 -0.043967 0.0513 149.000						
56.554 Sa 1 0 0.105071 -0.057879 0.1200 118.848	57.555 Ssa 1 0 0.213356 0.369254 0.4265 30.019						
56.554 Sa 2 0 0.071952 0.653729 0.6577 6.281	57.555 Ssa 2 0 -0.037297 0.093489 0.1007 338.251						
56.554 Sa 3 0 -1.225490 -0.371665 1.2806 253.129	57.555 Ssa 3 0 0.440373 0.198389 0.4830 65.748						
56.554 Sa 1 1 0.047282 0.220890 0.2259 12.082	57.555 Ssa 1 1 -0.187842 -0.054635 0.1956 253.783						
56.554 Sa 2 1 0.306172 0.548859 0.6285 29.154	57.555 Ssa 2 1 -0.100279 0.028146 0.1042 285.678						
56.554 Sa 3 1 -0.042330 0.336106 0.3388 352.822	57.555 Ssa 3 1 0.022220 0.062821 0.0666 19.479						
56.554 Sa 4 1 -0.112705 -0.170263 0.2042 213.502	57.555 Ssa 4 1 0.025233 0.041395 0.0485 31.365						
56.554 Sa 2 2 -0.218981 0.158912 0.2706 305.968	57.555 Ssa 2 2 -0.033028 0.012868 0.0354 291.286						
56.554 Sa 3 2 -0.256851 -0.042370 0.2603 260.633	57.555 Ssa 3 2 -0.071309 0.002881 0.0714 272.314						
56.554 Sa 4 2 -0.264284 0.003188 0.2643 270.691	57.555 Ssa 4 2 0.028970 0.007771 0.0300 74.984						
56.554 Sa 5 2 -0.197183 -0.006217 0.1973 268.194	57.555 Ssa 5 2 -0.028689 -0.015389 0.0326 241.791						
56.554 Sa 3 3 0.133799 -0.031722 0.1375 103.338	57.555 Ssa 3 3 -0.075016 -0.066689 0.1004 228.363						
56.554 Sa 4 3 0.096020 0.241783 0.2602 21.660	57.555 Ssa 4 3 0.007825 -0.056142 0.0567 172.065						
56.554 Sa 5 3 0.181815 0.111700 0.2134 58.435	57.555 Ssa 5 3 -0.111399 -0.068246 0.1306 238.507						
56.554 Sa 6 3 0.017368 0.156099 0.1571 6.349	57.555 Ssa 6 3 -0.022692 -0.077537 0.0808 196.313						
56.554 Sa 4 4 0.013902 -0.131590 0.1323 173.969	57.555 Ssa 4 4 -0.003236 -0.013119 0.0135 193.856						
56.554 Sa 5 4 -0.103664 -0.034022 0.1091 251.830	57.555 Ssa 5 4 0.048517 -0.037387 0.0613 127.618						
56.554 Sa 6 4 0.061234 -0.034274 0.0702 119.237	57.555 Ssa 6 4 -0.013902 0.014806 0.0203 316.804						
56.554 Sa 7 4 -0.053530 0.014686 0.0555 285.342	57.555 Ssa 7 4 0.035921 0.013320 0.0383 69.655						
56.554 Sa 5 5 -0.013892 -0.035348 0.0380 201.455	57.555 Ssa 5 5 0.004073 -0.025976 0.0263 171.089						
56.554 Sa 6 5 0.093559 -0.112805 0.1466 140.328	57.555 Ssa 6 5 0.000599 -0.026941 0.0269 178.726						
56.554 Sa 7 5 0.056152 -0.089431 0.1056 147.876	57.555 Ssa 7 5 -0.037086 -0.009590 0.0383 255.502						
56.554 Sa 8 5 0.047282 -0.034263 0.0584 125.929	57.555 Ssa 8 5 -0.028427 -0.007664 0.0294 254.912						

Comparison to the Haurwitz and Cowley model

- Model 1: H & W atmospheric tides (Haurwitz & Cowley, 1973) normalized model up to (8,5) (in mbar)
- Model 2: ECMWF derived atmospheric tides (Bode & Biancale, 2003) normalized model up to (8,5) (in mbar)

			m	odel 1	m	odel 2	2	- 1		
doodson	1	m	c+(mb)	eps+(deg)	c+(mb) eps+(deg.		.) differ	rence /	relative(%)	
164.556 S1	1	1	0.2885	12.0001	0.2210	73.1990	-0.0675	61.1989	-23.4	34.0
164.556 S1	2	1	0.0365	330.9997	0.0187	37.6330	-0.0178	66.6333	-48.8	37.0
164.556 S1	3	1	0.0860	197.0001	0.1259	264.8490	0.0399	67.8489	46.4	37.7
273.555 S2	2	2	0.5510	159.0000	0.5474	148.8220	-0.0036	-10.1780	-0.7	-5.7
273.555 S2	3	2	0.0260	81.0007	0.0284	20.2200	0.0024	-60.7807	9.2	-33.8
273.555 S2	4	2	0.0540	330.9995	0.0793	332.7500	0.0253	1.7505	46.9	1.0