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The relativistic correction to the acceleration of an artificial Earth satellite is [IERS Conventions
2003]
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Gaussian perturbation equations [e.g. Beutler, 2005]:
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In the following we will consider circular orbits (e = 0). The three perturbing accelerations R,
S and W in radial, alongtrack and crosstrack directions are then pointing parallel to the vectors
~r, ~̇r and ~r × ~̇r respectively. We will only be interested in secular perturbations.

With proper selection of the coordinate frame we may represent position, velocity, and angular
momentum vectors for a circular orbit in the following way:

~r = a(cos ν, sin ν, 0)
~v = an(− sin ν, cosν, 0) (8)

~r × ~v = a2n(0, 0, 1)

In addition we may use u = ν. The unit vectors in radial, alongtrack, and crosstrack directions
can be written as

~eR = (cos ν, sin ν, 0)
~eS = (− sin ν, cosν, 0) (9)
~eW = (0, 0, 1)

1 Schwarzschild

The Schwarzschild acceleration is for a circular orbit using GM = n2a3 reads (see (1))
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The accelerations in radial, alongtrack, and crosstrack directions are thus

R = ~eR ·∆~̈rSch = 3
(GM)2

c2a3
, S = ~eS ·∆~̈r = 0, W = ~eW ·∆~̈r = 0. (11)

A circular orbit thus feels only a constant outward radial acceleration. This is equivalent to a
change in GM :

~eR · ~̈rtot = −GM

a2
+ R = −GM

a2

(
1− Ra2

GM

)
= −GM ′

a2
. (12)

Keeping the revolution period unchanged and using Kepler’s third law

a′3n2 = GM ′ with a′ = a + ∆a (13)

we get to first order

∆a = −1
3

Ra3

GM
. (14)

Using R from (11) we obtain a decrease of the semimajor axis of

∆a = −GM

c2
= −4.4mm (15)

that is independent of a!
Since the Schwarzschild acceleration is in-plane it causes no perturbations in the orientation of

the orbital plane.

2 Lense-Thirring

The Lense-Thirring effect describes the frame dragging in the vicinity of the Earth due to the rotat-
ing Earth. The corresponding frame precession is proportional to the Earth’s angular momentum
J and decreases with the distance from the Earth. The corresponding acceleration reads
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c2r3
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3
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]

. (16)

Obviously it includes an out-of-plane but no alongtrack acceleration. In the reference frame
defined by (8) the Earth’s angular momentum vector may be written as

~J = J(0, sin i, cos i). (17)

For a circular orbit we may thus write

~r · ~J = aJ sin i sin ν, ~v × ~J = anJ(cos ν cos i, sin ν cos i,− sin ν sin i). (18)

We may thus write the decomposition of the acceleration into radial, alongtrack, and crosstrack
components as
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The constant radial component causes a reduction of the semimajor axis, according to (14), of

∆a = −2
3

anJ

c2
cos i ∝ a−1/2. (20)

The effect on the semimajor axis decreases with the square root of the semimajor axis. Note the
factor cos i in the radial acceleration and in the change of the semimajor axis. As a consequence
there is no radial acceleration and no change of semimajor axis for orbits perpendicular to the
equatorial plane.

According to (5) we obtain a perturbation in the right ascension of the ascending node (using
u = ν for circular orbit)

Ω̇LT =
sinu

na sin i
·W = 4

GM

c2a3
J sin2 u = 2

GM

c2a3
J(1− cos 2u) (21)

that includes a secular term. The orbit precession is independent on the orbit inclination i, as
expected, since the effect is a frame precession. The precession is proportional to a−3, i.e., drops
rapidly with increasing orbit radius.
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3 DeSitter

The deSitter or geodetic precession is caused by the rotation of the Earth around the Sun. Space
curvature causes a precession of a parallelly transported (local inertial) frame with respect to
distant stars. In the vicinity of the Earth the rate of precession amounts to 19.2 mas/y and does
not depend on the distance from the Earth. The corresponding acceleration contains the mass MS

and distance R of the Sun and has the form of a Coriolis term (see (1)):

∆~̈rdS = −2
[
−3

2
GMS

c2R3
~R× ~̇R

]
× ~v. (22)

The term in brackets is the precession vector ~ωdS of the global frame (used to represent the
satellite orbit) with respect to the local inertial (precessing) frame. It points to the southern
ecliptic pole and its magnitude is 2.95 · 10−15 rad/s or 53 µas/d resp. 19.2 mas/yr.

Redefining the frame used in (8) (x-axis towards ascending node with respect to ecliptic plane,
same z-axis) we may write

~ωdS = −3
2
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c2R3
~R× ~̇R = −3

2
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c2R

√
1− e2

SnS(0, sin β, cos β). (23)

nS is the mean motion of the Earth around the Sun. For the eccentricity eS=0.01673 of the
Earth’s orbit the square root term is

√
1− e2

S = 1− 1.40 · 10−4. β is the inclination of the orbital
plane with respect to the ecliptic. It is in the range i−ε and i+ε, where ε=23.5 deg is the obliquity
of the ecliptic and may be computed with

cosβ = cos ε cos i + sin ε sin i cosΩ. (24)

Interestingly the associated centrifugal term −~ωdS × (~ωdS × ~r) is missing in (22). The reason
is its magnitude of at maximum (for a geosynchronous orbit)

(
3
2

GMS

c2R
nS

)2

a ' 4 · 10−22 m/s2. (25)

In the defined frame we may write for a circular orbit

(~R× ~̇R)× ~v = R2nS

√
1− e2

San(− cosβ cos ν,− cosβ sin ν, sin β sin ν). (26)

With this we may finally write the perturbing accelerations in radial, alongtrack and crosstrack
directions

R = ∆~̈rdS · ~eR = −3
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c2R
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S = ∆~̈rdS · ~eS = 0 (27)

W = ∆~̈rdS · ~eW = 3
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nS

√
1− e2

San sin β sin ν

Note again the factor cos β in the radial acceleration. For orbits perpendicular to the ecliptic
plane there is no radial acceleration (and hence no change in semimajor axis) because the Coriolis
acceleration is perpendicular to the orbital plane.

The constant negative radial acceleration causes an increase of the semimajor axis by

∆a = +
GMS

c2

a

R

nS

n

√
1− e2

S cos β ∝ a5/2. (28)

∆a is increasing with in creasing distance from the Earth. With (5) we compute the precession
of the ascending node with respect to the ecliptic plane (again using u = ν for circular orbit)

Ω̇dS =
sin u

na sin β
·W = 3
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√
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2
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It is no surprise that the secular term is equal to the precession rate given in (23).
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4 Orders of Magnitude

The following Table 1 gives orders of magnitude for different terms and different satellites. The
Lense-Thirring acceleration is for all orbit types smaller than the Schwarzschild acceleration by
two orders of magnitude. For semimajor axes lower than about 11000 km the Lense-Thirring effect
is more important than the deSitter effect. It is probably no coincidence that the accelerations and
orbit precession rates due to Lense-Thirring and deSitter are of equal magnitude for LAGEOS.

For semimajor axes above 11000 km the deSitter effect is more important than Lense-Thirring.
For geosynchronous satellites the deSitter acceleration is only one order of magnitude smaller than
the Schwarzschild acceleration. At a distance larger than about 73000 km it even becomes more
important than the Schwarzschild effect, probably marking the limit of validity of the underlying
assumptions.

Term GEO GPS LAGEOS Jason CHAMP
Height 35786 20184 5850 1335 350 km
Schwarzschild
3 (GM)2

c2a3 7.07 · 10−11 2.83 · 10−10 2.90 · 10−9 1.16 · 10−8 1.74 · 10−8 ms−2

∆a -4.4 -4.4 -4.4 -4.4 -4.4 mm
Lense-Thirring
2 GM

c2a2 nJ 3.57 · 10−13 1.80 · 10−12 2.71 · 10−11 1.36 · 10−10 2.20 · 10−10 ms−2

∆a/ cos i -22 -28 -42 -52 -56 µm
Ω̇ 2.1 8.8 85 340 510 µas/d
deSitter
3GMS

c2R nSan 1.81 · 10−11 2.28 · 10−11 3.37 · 10−11 4.24 · 10−11 4.54 · 10−11 m/s2

∆a/ cos β 1100 360 51 16 12 µm
Ω̇ 53 53 53 53 53 µas/d

Table 1: Orders of magnitude for different terms and different satellites
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Figure 1: Radial acceleration as function of height for circular orbits with vanishing inclination
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