
6 Geopotential (01 February 2018)

Gravitational models commonly used in current (2010) precision orbital analysis represent a sig-
nificant improvement with respect to geopotential model EGM96, the past conventional model of
the IERS Conventions (2003), thanks to the availability of CHAMP <1> and, most importantly,
GRACE <2> data in the 2000s.

The IERS, recognizing the recent development of new gravitational models derived from the optimal
combination of GRACE data with high resolution gravitational information obtained from surface
gravimetry and satellite altimetry data, recommends at this time the EGM2008 model as the
conventional model.

The conventional model that is presented in Section 6.1 describes the static part of the field and
the underlying background model for the secular variations of some of its coefficients. In addition,
other time varying effects should be taken into account: solid Earth tides (Section 6.2), ocean tides
(Section 6.3), solid Earth pole tide (Section 6.4), and ocean pole tide (Section 6.5).

The geopotential field V at the point (r, φ, λ) is expanded in spherical harmonics up to degree N
as

V (r, φ, λ) =
GM

r

N∑
n=0

(ae
r

)n n∑
m=0

[
C̄nmcos(mλ) + S̄nmsin(mλ)

]
P̄nm(sinφ) (6.1)

(with S̄n0 = 0), where C̄nm and S̄nm are the normalized geopotential coefficients and P̄nm are
the normalized associated Legendre functions. The normalized Legendre function is related to the
classical (unnormalized) one by

P̄nm = NnmPnm, (6.2a)

where

Nnm =

√
(n−m)!(2n+ 1)(2− δ0m)

(n+m)!
, δ0m =

{
1 if m = 0

0 if m 6= 0
(6.2b)

Correspondingly, the normalized geopotential coefficients (C̄nm, S̄nm) are related to the unnormal-
ized coefficients (Cnm, Snm) by

Cnm = NnmC̄nm, Snm = NnmS̄nm. (6.3)

The scaling parameters (GM , ae) associated with the model are described in Section 6.1. Sec-
tions 6.2 to 6.5 provide variations to the normalized coefficients (C̄nm, S̄nm) due to the physical
effects described in each section.

6.1 Conventional model based on the EGM2008 model

The EGM2008 model (Pavlis et al., 2008) is complete to degree and order 2159, and contains addi-
tional spherical harmonic coefficients up to degree 2190 and order 2159. The GM⊕ and ae values
reported with EGM2008 (398600.4415 km3/s2 and 6378136.3 m) should be used as scaling pa-
rameters with its gravitational potential coefficients. They are to be considered as TT-compatible
values. The recommended TCG-compatible value, GM⊕ = 398600.4418 km3/s2, should be used
with the two-body term when working with Geocentric Coordinate Time (TCG) (398600.4415 or
398600.4356 should be used by those still working with Terrestrial Time (TT) or Barycentric Dy-
namical Time (TDB), respectively). The EGM2008 model (including error estimates) is available
at <3>.

Although EGM2008 is complete to degree and order 2159, most users in space geodesy will find
their needs covered by a truncated version of the model. Suggested truncation levels as a function
of the orbit of interest are listed in Table 6.1 It is expected that these truncation levels provide a
3-dimensional orbit accuracy of better than 0.5 mm for the indicated satellites (Ries, 2010).

1http://op.gfz-potsdam.de/champ/
2http://www.csr.utexas.edu/grace/
3http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/
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Table 6.1: Suggested truncation levels for use of EGM2008 at different orbits

Orbit radius / km Example Truncation level
7331 Starlette 90

12270 Lageos 20
26600 GPS 12

The EGM2008 model was based on the ITG-GRACE03S GRACE-only gravitational model (<4>,
see also Mayer-Gürr, 2007) which is available along with its complete error covariance matrix to
degree and order 180. Therefore the static gravitational field was developed assuming models
complying with the IERS Conventions (2003) and complemented by the following:

• ocean tides: FES2004 (Lyard et al., 2006),

• ocean pole tide: Desai (2003, see Section 6.5),

• atmosphere and ocean de-aliasing: AOD1B RL04 (Flechtner, 2007).

For some of the low-degree coefficients, the conventional geopotential model uses values which are
different from the original EGM2008 values. The static field also assumes values for the secular
rates of low-degree coefficients. In order to use the static field properly and project it in time,
the secular rates should be accounted for. The instantaneous values of coefficients C̄n0 to be used
when computing orbits are given by:

C̄n0(t) = C̄n0(t0) + dC̄n0/dt× (t− t0) (6.4)

where t0 is the epoch J2000.0 and the values of C̄n0(t0) and dC̄n0/dt are given in Table 6.2.
Note that the zero-tide C20 coefficient in the conventional geopotential model is obtained from the
analysis of 17 years of SLR data approximately centered on year 2000 and has an uncertainty of
2 × 10−11 (Cheng et al., 2010). It differs significantly from the EGM2008 value obtained from 4
years of GRACE data, as it is expected that tide-like aliases will affect GRACE-based C20 values,
depending on the averaging interval used. The tide-free value of C20 can be obtained as described
in Section 6.2.2.

Table 6.2: Low-degree coefficients of the conventional geopotential model
Coefficient Value at 2000.0 Reference Rate / yr−1 Reference

C̄20 (zero-tide) -0.48416948×10−3 Cheng et al., 2010 11.6× 10−12 Nerem et al., 1993

C̄30 0.9571612×10−6 EGM2008 4.9× 10−12 Cheng et al., 1997
C̄40 0.5399659×10−6 EGM2008 4.7× 10−12 Cheng et al., 1997

2018/02/01

Values for the C21 and S21 coefficients are included in the conventional geopotential model. The
C21 and S21 coefficients describe the position of the Earth’s figure axis. When averaged over
many years, the figure axis should closely coincide with the observed position of the rotation pole
averaged over the same time period. Any differences between the averaged positions of the mean
figure and the mean rotation pole would be due to long-period fluid motions in the atmosphere,
oceans, or Earth’s fluid core (Wahr, 1987; 1990). At present, there is no independent evidence
that such motions are important. The conventional values for C21(t) and S21(t) are intended to be
consistent with a mean figure axis corresponding to the pole position consistent with the terrestrial
reference frame defined in Chapter 4.

For some applications<5> the gravitational potential coefficients, which are provided in an Earth-
fixed frame, are required to be an inertial frame. A transformation equation of the geopotential

4http://www.igg.uni-bonn.de/apmg/fileadmin/itg-grace03.html
5Applications include a) the computation of orbital elements of artificial Earth satellites and b) the reconstruction

of Earth moment of inertia changes as determined by geophysical models at multi-decadal periods.
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coefficients to obtain C̄21 and S̄21 in an inertial frame, accounting for the effects of polar motion,
is given as:

C̄21(t) =
√

3xf (t)C̄20 − xf (t)C̄22 + yf (t)S̄22,

S̄21(t) = −
√

3yf (t)C̄20 − yf (t)C̄22 − xf (t)S̄22,
(6.5)

where xf (t) and yf (t) (in radians) represent the appropriate angular coordinates of the pole con-
sistent with the mean figure axis corresponding to the pole of the TRF defined in Chapter 4. Any
recent value of C̄20, C̄22 and S̄22 is adequate for 10−14 accuracy in Equation (6.5), e.g. the values
of the present conventional model (−0.48416948×10−3, 2.4393836×10−6 and −1.4002737×10−6

respectively) can be used.

2018/02/01

The models for the low degree terms are generally consistent with the past long-term trends, but
these are not strictly linear in reality. There may be decadal variations that are not captured by
the models. In addition, they may not be consistent with more recent surface mass trends due to
increased ice sheet melting and other results of global climate change.

6.2 Effect of solid Earth tides

6.2.1 Conventional model for the solid Earth tides

The changes induced by the solid Earth tides in the free space potential are most conveniently
modeled as variations in the standard geopotential coefficients Cnm and Snm (Eanes et al., 1983).
The contributions ∆Cnm and ∆Snm from the tides are expressible in terms of the Love number
k. The effects of ellipticity and of the Coriolis force due to Earth rotation on tidal deformations

necessitate the use of three k parameters, k
(0)
nm and k

(±)
nm (except for n = 2) to characterize the

changes produced in the free space potential by tides of spherical harmonic degree and order (nm)

(Wahr, 1981); only two parameters are needed for n = 2 because k
(−)
2m = 0 due to mass conservation.

Anelasticity of the mantle causes k
(0)
nm and k

(±)
nm to acquire small imaginary parts (reflecting a

phase lag in the deformational response of the Earth to tidal forces), and also gives rise to a
variation with frequency which is particularly pronounced within the long period band. Though
modeling of anelasticity at the periods relevant to tidal phenomena (8 hours to 18.6 years) is not
yet definitive, it is clear that the magnitudes of the contributions from anelasticity cannot be
ignored (see below). Recent evidence relating to the role of anelasticity in the accurate modeling
of nutation data (Mathews et al., 2002) lends support to the model employed herein, at least up
to diurnal tidal periods; and there is no compelling reason at present to adopt a different model
for the long period tides.

Solid Earth tides within the diurnal tidal band (for which (nm) = (21)) are not wholly due to
the direct action of the tide generating potential (TGP) on the solid Earth; they include the
deformations (and associated geopotential changes) arising from other effects of the TGP, namely,
ocean tides and wobbles of the mantle and the core regions. Deformation due to wobbles arises
from the incremental centrifugal potentials caused by the wobbles; and ocean tides load the crust
and thus cause deformations. Anelasticity affects the Earth’s deformational response to all these
types of forcing.

The wobbles, in turn, are affected by changes in the Earth’s moment of inertia due to deformations
from all sources, and in particular, from the deformation due to loading by the (nm) = (21) part of
the ocean tide; wobbles are also affected by the anelasticity contributions to all deformations, and
by the coupling of the fluid core to the mantle and the inner core through the action of magnetic
fields at its boundaries (Mathews et al., 2002). Resonances in the wobbles—principally, the Nearly
Diurnal Free Wobble resonance associated with the FCN —and the consequent resonances in the
contribution to tidal deformation from the centrifugal perturbations associated with the wobbles,
cause the body tide and load Love/Shida number parameters of the diurnal tides to become strongly
frequency dependent. For the derivation of resonance formulae of the form (6.9) below to represent
this frequency dependence, see Mathews et al., (1995). The resonance expansions assume that the
Earth parameters entering the wobble equations are all frequency independent. However the ocean
tide induced deformation makes a frequency dependent contribution to deformability parameters
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which are among the Earth parameters just referred to. It becomes necessary therefore to add
small corrections to the Love number parameters computed using the resonance formulae. These
corrections are included in the tables of Love number parameters given in this chapter and the
next.

The deformation due to ocean loading is itself computed in the first place using frequency indepen-
dent load Love numbers (see Section 7.1.2). Corrections to take account of the resonances in the
load Love numbers are incorporated through equivalent corrections to the body tide Love numbers,
following Wahr and Sasao (1981), as explained further below. These corrections are also included
in the tables of Love numbers.

The degree 2 tides produce time dependent changes in C2m and S2m, through k
(0)
2m, which can

exceed 10−8 in magnitude. They also produce changes exceeding 3 × 10−12 in C4m and S4m

through k
(+)
2m . (The direct contributions of the degree 4 tidal potential to these coefficients are

negligible.) The only other changes exceeding this cutoff are in C3m and S3m, produced by the
degree 3 part of the TGP.

The computation of the tidal contributions to the geopotential coefficients is most efficiently done
by a three-step procedure. In Step 1, the (2m) part of the tidal potential is evaluated in the time
domain for each m using lunar and solar ephemerides, and the corresponding changes ∆C2m and

∆S2m are computed using frequency independent nominal values k2m for the respective k
(0)
2m. The

contributions of the degree 3 tides to C3m and S3m through k
(0)
3m and also those of the degree 2

tides to C4m and S4m through k
(+)
2m may be computed by a similar procedure; they are at the level

of 10−11.

Step 2 corrects for the deviations of the k
(0)
21 of several of the constituent tides of the diurnal band

from the constant nominal value k21 assumed for this band in the first step. Similar corrections
need to be applied to a few of the constituents of the other two bands also.

Steps 1 and 2 can be used to compute the total tidal contribution, including the time independent
(permanent) contribution to the geopotential coefficient C̄20, which is adequate for a “conventional
tide free” model such as EGM96. When using a “zero tide” model, this permanent part should
not be counted twice, this is the goal of Step 3 of the computation. See Section 6.2.2.

With frequency-independent values knm (Step 1), changes induced by the (nm) part of the TGP
in the normalized geopotential coefficients having the same (nm) are given in the time domain by

∆C̄nm − i∆S̄nm =
knm

2n+ 1

3∑
j=2

GMj

GM⊕

(Re
rj

)n+1

P̄nm(sin Φj)e
−imλj (6.6)

where

knm = nominal Love number for degree n and order m,

Re = equatorial radius of the Earth,

GM⊕ = gravitational parameter for the Earth,

GMj = gravitational parameter for the Moon (j = 2)and Sun (j = 3),

rj = distance from geocenter to Moon or Sun,

Φj = body-fixed geocentric latitude of Moon or Sun,

λj = body-fixed east longitude (from Greenwich) of Moon or Sun.

Equation (6.6) yields ∆C̄nm and ∆S̄nm for both n = 2 and n = 3 for all m, apart from the
corrections for frequency dependence to be evaluated in Step 2. (The particular case (nm) = (20)
needs special consideration, however, as already indicated.)

One further computation to be done in Step 1 is that of the changes in the degree 4 coefficients
produced by the degree 2 tides. They are given by

∆C̄4m − i∆S̄4m =
k
(+)
2m

5

∑3
j=2

GMj

GM⊕

(
Re

rj

)3

P̄2m(sin Φj)e
−imλj , (m = 0, 1, 2),

(6.7)
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which has the same form as Equation (6.6) for n = 2 except for the replacement of k2m by k
(+)
2m .

The parameter values for the computations of Step 1 are given in Table 6.3. The choice of these
nominal values has been made so as to minimize the number of terms for which corrections will
have to be applied in Step 2. The nominal value for m = 0 has to be chosen real because there is

no closed expression for the contribution to C̄20 from the imaginary part of k
(0)
20 .

Table 6.3: Nominal values of solid Earth tide external potential Love numbers.

Elastic Earth Anelastic Earth

n m knm k
(+)
nm Re knm Im knm k

(+)
nm

2 0 0.29525 −0.00087 0.30190 −0.00000 −0.00089
2 1 0.29470 −0.00079 0.29830 −0.00144 −0.00080
2 2 0.29801 −0.00057 0.30102 −0.00130 −0.00057
3 0 0.093 · · ·
3 1 0.093 · · ·
3 2 0.093 · · ·
3 3 0.094 · · ·

The frequency dependent corrections to the ∆C̄nm and ∆S̄nm values obtained from Step 1 are
computed in Step 2 as the sum of contributions from a number of tidal constituents belonging to
the respective bands. The contribution to ∆C̄20 from the long period tidal constituents of various
frequencies f is

Re
∑
f(2,0)(A0δkfHf ) eiθf =

∑
f(2,0)[(A0Hfδk

R
f ) cos θf − (A0Hfδk

I
f ) sin θf ], (6.8a)

while the contribution to (∆C̄21−i∆S̄21) from the diurnal tidal constituents
and to ∆C̄22 − i∆S̄22 from the semidiurnals are given by

∆C̄2m − i∆S̄2m = ηm
∑
f(2,m)

(AmδkfHf ) eiθf , (m = 1, 2), (6.8b)

where

A0 =
1

Re
√

4π
= 4.4228× 10−8 m−1, (6.8c)

Am =
(−1)m

Re
√

8π
= (−1)m(3.1274× 10−8) m−1, (m 6= 0), (6.8d)

η1 = −i, η2 = 1, (6.8e)

δkf = difference between kf defined as k
(0)
2m at frequency f and

the nominal value k2m, in the sense kf − k2m, plus a
contribution from ocean loading,

δkRf = real part of δkf , and

δkIf = imaginary part of δkf , i.e., δkf = δkRf + iδkIf ,

Hf = amplitude (in meters) of the term at frequency f from
the harmonic expansion of the tide generating potential,
defined according to the convention of Cartwright and
Tayler (1971), and

θf = n̄ · β̄ =
∑6
i=1 niβi, or

θf = m(θg + π)− N̄ · F̄ = m(θg + π)−
∑5
j=1NjFj ,
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where

β̄ = six-vector of Doodson’s fundamental arguments βi,(τ, s, h, p,N ′, ps),

n̄ = six-vector of multipliers ni (for the term at frequency f)
of the fundamental arguments,

F̄ = five-vector of fundamental arguments Fj
(the Delaunay variables l, l′, F,D,Ω) of nutation theory,

N̄ = five-vector of multipliers Nj of the Delaunay variables for
the nutation of frequency −f + dθg/dt,

and θg is the Greenwich Mean Sidereal Time expressed in angle
units (i.e. 24 h = 360◦; see Chapter 5).

(π in (θg + π) is now to be replaced by 180◦.)

For the fundamental arguments (l, l′, F,D,Ω) of nutation theory and the convention followed here
in choosing their multipliersNj , see Chapter 5. For conversion of tidal amplitudes defined according
to different conventions to the amplitude Hf corresponding to the Cartwright-Tayler convention,
use Table 6.8 given at the end of this chapter.

For diurnal tides, the frequency dependent values of any load or body tide Love number parameter

L (such as k
(0)
21 or k

(+)
21 in the present context) may be represented as a function of the tidal

excitation frequency σ by a resonance formula

L(σ) = L0 +

3∑
α=1

Lα
(σ − σα)

, (6.9)

except for the small corrections referred to earlier. (They are to take account of frequency depen-
dent contributions to a few of the Earth’s deformability parameters, which make (6.9) inexact.)
The σα, (α = 1, 2, 3), are the respective resonance frequencies associated with the Chandler wobble
(CW), the retrograde FCN, and the prograde free core nutation (also known as the free inner core
nutation), and the Lα are the corresponding resonance coefficients. All the parameters are complex.
The σα and σ are expressed in cycles per sidereal day (cpsd), with the convention that positive
(negative) frequencies represent retrograde (prograde) waves. (This sign convention, followed in
tidal theory, is the opposite of that employed in analytical theories of nutation.) In particular,
given the tidal frequency f in degrees per hour, one has

σ = f/(15× 1.002737909),

the factor 1.002737909 being the number of sidereal days per solar day. The values used herein for
the σα are from Mathews et al. (2002), adapted to the sign convention used here:

σ1 = − 0.0026010 − 0.0001361 i
σ2 = 1.0023181 + 0.000025 i
σ3 = 0.999026 + 0.000780 i.

(6.10)

They were estimated from a fit of nutation theory to precession rate and nutation amplitude
estimates found from an analyis of very long baseline interferometry (VLBI) data.

Table 6.4 lists the values of L0 and Lα in resonance formulae of the form (6.9) for k
(0)
21 and

k
(+)
21 . They were obtained by evaluating the relevant expressions from Mathews et al. (1995), using

values taken from computations of Buffett and Mathews (unpublished) for the needed deformability
parameters together with values obtained for the wobble resonance parameters in the course of
computations of the nutation results of Mathews et al. (2002). The deformability parameters for
an elliptical, rotating, elastic, and oceanless Earth model based on the 1-second reference period
preliminary reference Earth model (PREM) (Dziewonski and Anderson, 1981) with the ocean
layer replaced by solid, and corrections to these for the effects of mantle anelasticity, were found
by integration of the tidal deformation equations. Anelasticity computations were based on the
Widmer et al. (1991) model of mantle Q. As in Wahr and Bergen (1986), a power law was assumed
for the frequency dependence of Q, with 200 s as the reference period; the value α = 0.15 was
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used for the power law index. The anelasticity contribution (out-of-phase and in-phase) to the
tidal changes in the geopotential coefficients is at the level of 1− 2% in-phase, and 0.5− 1% out-
of-phase, i.e., of the order of 10−10. The effects of anelasticity, ocean loading and currents, and

electromagnetic couplings on the wobbles result in indirect contributions to k
(0)
21 and k

(+)
21 which

are almost fully accounted for through the values of the wobble resonance parameters. Also shown
in Table 6.4 are the resonance parameters for the load Love numbers h′21, k′21, and l′21, which are
relevant to the solid Earth deformation caused by ocean tidal loading and to the consequential
changes in the geopotential. (Only the real parts are shown: the small imaginary parts make no
difference to the effect to be now considered which is itself small.)

Table 6.4: Parameters in the resonance formulae for k
(0)
21 , k

(+)
21 and the load Love numbers.

k
(0)
21 k

(+)
21α Re Lα Im Lα Re Lα Im Lα

0 0.29954 −0.1412× 10−2 −0.804× 10−3 0.237× 10−5

1 −0.77896× 10−3 −0.3711× 10−4 0.209× 10−5 0.103× 10−6

2 0.90963× 10−4 −0.2963× 10−5 −0.182× 10−6 0.650× 10−8

3 −0.11416× 10−5 0.5325× 10−7 −0.713× 10−9 −0.330× 10−9

Load Love numbers (Real parts only)
h′21 l′21 k′21

0 −0.99500 0.02315 −0.30808
1 1.6583× 10−3 2.3232× 10−4 8.1874× 10−4

2 2.8018× 10−4 −8.4659× 10−6 1.4116× 10−4

3 5.5852× 10−7 1.0724× 10−8 3.4618× 10−7

The expressions given in Section 6.3 for the contributions from ocean tidal loading assume the
constant nominal value k′2

(nom) = −0.3075 for k′ of the degree 2 tides. Further contributions arise
from the frequency dependence of k′21. These may be expressed, following Wahr and Sasao (1981),

in terms of an effective ocean tide contribution δk(OT )(σ) to the body tide Love number k
(0)
21 :

δk(OT )(σ) = [k′21(σ)− k′2(nom)]

(
4πGρwR

5ḡ

)
A21(σ), (6.11)

where G is the constant of universal gravitation, ρw is the density of sea water (1025 kg m−3), R is
the Earth’s mean radius (6.371× 106 m), ḡ is the mean acceleration due to gravity at the Earth’s
surface (9.820 m s−2), and A21(σ) is the admittance for the degree 2 tesseral component of the
ocean tide of frequency σ in cpsd:

A21(σ) = ζ21(σ)/H̄(σ).

ζ21 is the complex amplitude of the height of the (nm) = (21) component of the ocean tide, and H̄
is the height equivalent of the amplitude of the tide generating potential, the bar being a reminder
that the spherical harmonics used in defining the two amplitudes should be identically normalized.
Wahr and Sasao (1981) employed the factorized form

A21(σ) = fFCN (σ) fOD(σ),

wherein the first factor represents the effect of the FCN resonance, and the second, that of other
ocean dynamic factors. The following empirical formulae (Mathews et al., 2002) which provide
good fits to the FCN factors of a set of 11 diurnal tides (Desai and Wahr, 1995) and to the
admittances obtainable from the ocean load angular momenta of four principal tides (Chao et al.,
1996) are used herein:
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fOD(σ) = (1.3101− 0.8098 i)− (1.1212− 0.6030 i)σ,

fFCN (σ) = 0.1732 + 0.9687 feqm(σ),

feqm(σ) =
γ(σ)

1− (3ρw/5ρ̄)γ′(σ)
,

where γ = 1 + k − h and γ′ = 1 + k′ − h′, ρ̄ is the Earth’s mean density. (Here k stands for k
(0)
21 ,

and similarly for the other symbols. Only the real parts need be used.) feqm is the FCN factor for
a global equilibrium ocean.

Table 6.5a shows the values of

δkf ≡ (k
(0)
21 (σ)− k21) + δkOT21 (σ),

along with the real and imaginary parts of the amplitude (A1δkfHf ). The tides listed are those
for which either of the parts is at least 10−13 after round-off. (A cutoff at this level is used for the
individual terms in order that accuracy at the level of 3×10−12 be not affected by the accumulated
contributions from the numerous smaller terms that are disregarded.) Roughly half the value of
the imaginary part comes from the ocean tide term, and the real part contribution from this term
is of about the same magnitude.

The values used for k
(0)
21 (σ) in evaluating δkf are from an exact computation necessarily involving

use of the framework of nutation-wobble theory which is outside the scope of this chapter. If the
(approximate) resonance formula were used instead for the computation, the resulting numbers for
δkRf and δkIf would require small corrections to match the exact values. In units of 10−5, they are
(in-phase, out-of-phase) (1, 1) for Q1, (1, 1) for O1 and its companion having Doodson numbers
145,545, (1, 0) for No1, (0,−1) for P1, (244, 299) for ψ1, (12, 12) for φ1, (3, 2) for J1, and (2, 1)
for Oo1 and its companion with Doodson numbers 185,565. These are the only tides for which the
corrections would contribute nonnegligibly to the numbers listed in the last two columns of the
table.

Calculation of the correction due to any tidal constituent is illustrated by the following example

for K1. Given that Am = A1 = −3.1274× 10−8, and that Hf = 0.36870, θf = (θg +π), and k
(0)
21 =

(0.25746 + 0.00118 i) for this tide, one finds on subtracting the nominal value (0.29830− 0.00144 i)
that δkf = (−0.04084 + 0.00262 i). Equation (6.8b) then yields:

(∆C̄21)K1
= 470.9× 10−12 sin(θg + π)− 30.2× 10−12 cos(θg + π),

(∆S̄21)K1
= 470.9× 10−12 cos(θg + π) + 30.2× 10−12 sin(θg + π).

The variation of k
(0)
20 across the zonal tidal band, (nm) = (20), is due to mantle anelasticity; it is

described by the formula

k
(0)
20 = 0.29525− 5.796× 10−4

{
cot

απ

2

[
1−

(
fm
f

)α]
+ i

(
fm
f

)α}
(6.12)

on the basis of the anelasticity model referred to earlier. Here f is the frequency of the zonal tidal
constituent, fm is the reference frequency equivalent to a period of 200 s, and α = 0.15. The δkf

in Table 6.5b are the differences between k
(0)
20 computed from the above formula and the nominal

value k20 = 0.30190 given in Table 6.3.

The total variation in geopotential coefficient C̄20 is obtained by adding to the result of Step
1 the sum of the contributions from the tidal constituents listed in Table 6.5b computed using
Equation (6.8a). The tidal variations in C̄2m and S̄2m for the other m are computed similarly,
except that Equation (6.8b) is to be used together with Table 6.5a for m = 1 and Table 6.5c for
m = 2.
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Table 6.5a: The in-phase (ip) amplitudes (A1δk
R
f Hf ) and the out-of-phase (op) amplitudes(A1δk

I
fHf )

of the corrections for frequency dependence of k
(0)
21 , taking the nominal value k21 for the

diurnal tides as (0.29830 − i 0.00144). Units: 10−12. The entries for δkRf and δkIf are in

units of 10−5. Multipliers of the Doodson arguments identifying the tidal terms are given,
as also those of the Delaunay variables characterizing the nutations produced by these
terms.

Name deg/hr Doodson τ s h p N ′ ps ` `′ F D Ω δkRf δkIf Amp. Amp.
No. /10−5 /10−5 (ip) (op)

2Q1 12.85429 125,755 1 -3 0 2 0 0 2 0 2 0 2 -29 3 -0.1 0.0
σ1 12.92714 127,555 1 -3 2 0 0 0 0 0 2 2 2 -30 3 -0.1 0.0

13.39645 135,645 1 -2 0 1 -1 0 1 0 2 0 1 -45 5 -0.1 0.0
Q1 13.39866 135,655 1 -2 0 1 0 0 1 0 2 0 2 -46 5 -0.7 0.1
ρ1 13.47151 137,455 1 -2 2 -1 0 0 -1 0 2 2 2 -49 5 -0.1 0.0

13.94083 145,545 1 -1 0 0 -1 0 0 0 2 0 1 -82 7 -1.3 0.1
O1 13.94303 145,555 1 -1 0 0 0 0 0 0 2 0 2 -83 7 -6.8 0.6
τ1 14.02517 147,555 1 -1 2 0 0 0 0 0 0 2 0 -91 9 0.1 0.0

Nτ1 14.41456 153,655 1 0 -2 1 0 0 1 0 2 -2 2 -168 14 0.1 0.0
14.48520 155,445 1 0 0 -1 -1 0 -1 0 2 0 1 -193 16 0.1 0.0

Lk1 14.48741 155,455 1 0 0 -1 0 0 -1 0 2 0 2 -194 16 0.4 0.0
No1 14.49669 155,655 1 0 0 1 0 0 1 0 0 0 0 -197 16 1.3 -0.1

14.49890 155,665 1 0 0 1 1 0 1 0 0 0 1 -198 16 0.3 0.0
χ1 14.56955 157,455 1 0 2 -1 0 0 -1 0 0 2 0 -231 18 0.3 0.0

14.57176 157,465 1 0 2 -1 1 0 -1 0 0 2 1 -233 18 0.1 0.0
π1 14.91787 162,556 1 1 -3 0 0 1 0 1 2 -2 2 -834 58 -1.9 0.1

14.95673 163,545 1 1 -2 0 -1 0 0 0 2 -2 1 -1117 76 0.5 0.0
P1 14.95893 163,555 1 1 -2 0 0 0 0 0 2 -2 2 -1138 77 -43.4 2.9

15.00000 164,554 1 1 -1 0 0 -1 0 -1 2 -2 2 -1764 104 0.6 0.0
S1 15.00000 164,556 1 1 -1 0 0 1 0 1 0 0 0 -1764 104 1.6 -0.1

15.02958 165,345 1 1 0 -2 -1 0 -2 0 2 0 1 -3048 92 0.1 0.0
15.03665 165,535 1 1 0 0 -2 0 0 0 0 0 -2 -3630 195 0.1 0.0
15.03886 165,545 1 1 0 0 -1 0 0 0 0 0 -1 -3845 229 -8.8 0.5

K1 15.04107 165,555 1 1 0 0 0 0 0 0 0 0 0 -4084 262 470.9 -30.2
15.04328 165,565 1 1 0 0 1 0 0 0 0 0 1 -4355 297 68.1 -4.6
15.04548 165,575 1 1 0 0 2 0 0 0 0 0 2 -4665 334 -1.6 0.1
15.07749 166,455 1 1 1 -1 0 0 -1 0 0 1 0 85693 21013 0.1 0.0
15.07993 166,544 1 1 1 0 -1 -1 0 -1 0 0 -1 35203 2084 -0.1 0.0

ψ1 15.08214 166,554 1 1 1 0 0 -1 0 -1 0 0 0 22794 358 -20.6 -0.3
15.08214 166,556 1 1 1 0 0 1 0 1 -2 2 -2 22780 358 0.3 0.0
15.08434 166,564 1 1 1 0 1 -1 0 -1 0 0 1 16842 -85 -0.3 0.0
15.11392 167,355 1 1 2 -2 0 0 -2 0 0 2 0 3755 -189 -0.2 0.0
15.11613 167,365 1 1 2 -2 1 0 -2 0 0 2 1 3552 -182 -0.1 0.0

φ1 15.12321 167,555 1 1 2 0 0 0 0 0 -2 2 -2 3025 -160 -5.0 0.3
15.12542 167,565 1 1 2 0 1 0 0 0 -2 2 -1 2892 -154 0.2 0.0
15.16427 168,554 1 1 3 0 0 -1 0 -1 -2 2 -2 1638 -93 -0.2 0.0

θ1 15.51259 173,655 1 2 -2 1 0 0 1 0 0 -2 0 370 -20 -0.5 0.0
15.51480 173,665 1 2 -2 1 1 0 1 0 0 -2 1 369 -20 -0.1 0.0
15.58323 175,445 1 2 0 -1 -1 0 -1 0 0 0 -1 325 -17 0.1 0.0

J1 15.58545 175,455 1 2 0 -1 0 0 -1 0 0 0 0 324 -17 -2.1 0.1
15.58765 175,465 1 2 0 -1 1 0 -1 0 0 0 1 323 -16 -0.4 0.0

So1 16.05697 183,555 1 3 -2 0 0 0 0 0 0 -2 0 194 -8 -0.2 0.0
16.12989 185,355 1 3 0 -2 0 0 -2 0 0 0 0 185 -7 -0.1 0.0

Oo1 16.13911 185,555 1 3 0 0 0 0 0 0 -2 0 -2 184 -7 -0.6 0.0
16.14131 185,565 1 3 0 0 1 0 0 0 -2 0 -1 184 -7 -0.4 0.0
16.14352 185,575 1 3 0 0 2 0 0 0 -2 0 0 184 -7 -0.1 0.0

ν1 16.68348 195,455 1 4 0 -1 0 0 -1 0 -2 0 -2 141 -4 -0.1 0.0
16.68569 195,465 1 4 0 -1 1 0 -1 0 -2 0 -1 141 -4 -0.1 0.0
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Table 6.5b: Corrections for frequency dependence of k
(0)
20 of the zonal tides due to anelasticity.

Units: 10−12. The nominal value k20 for the zonal tides is taken as 0.30190. The real
and imaginary parts δkRf and δkIf of δkf are listed, along with the corresponding in-phase

(ip) amplitude (A0Hfδk
R
f ) and out-of-phase (op) amplitude (A0Hfδk

I
f ) to be used in

Equation (6.8a).

Name Doodson deg/hr τ s h p N ′ ps ` `′ F D Ω δkRf Amp. δkIf Amp.

No. (ip) (op)

55,565 0.00221 0 0 0 0 1 0 0 0 0 0 1 0.01347 16.6 -0.00541 -6.7
55,575 0.00441 0 0 0 0 2 0 0 0 0 0 2 0.01124 -0.1 -0.00488 0.1

Sa 56,554 0.04107 0 0 1 0 0 -1 0 -1 0 0 0 0.00547 -1.2 -0.00349 0.8
Ssa 57,555 0.08214 0 0 2 0 0 0 0 0 -2 2 -2 0.00403 -5.5 -0.00315 4.3

57,565 0.08434 0 0 2 0 1 0 0 0 -2 2 -1 0.00398 0.1 -0.00313 -0.1
58,554 0.12320 0 0 3 0 0 -1 0 -1 -2 2 -2 0.00326 -0.3 -0.00296 0.2

Msm 63,655 0.47152 0 1 -2 1 0 0 1 0 0 -2 0 0.00101 -0.3 -0.00242 0.7
65,445 0.54217 0 1 0 -1 -1 0 -1 0 0 0 -1 0.00080 0.1 -0.00237 -0.2

Mm 65,455 0.54438 0 1 0 -1 0 0 -1 0 0 0 0 0.00080 -1.2 -0.00237 3.7
65,465 0.54658 0 1 0 -1 1 0 -1 0 0 0 1 0.00079 0.1 -0.00237 -0.2
65,655 0.55366 0 1 0 1 0 0 1 0 -2 0 -2 0.00077 0.1 -0.00236 -0.2

Msf 73,555 1.01590 0 2 -2 0 0 0 0 0 0 -2 0 -0.00009 0.0 -0.00216 0.6
75,355 1.08875 0 2 0 -2 0 0 -2 0 0 0 0 -0.00018 0.0 -0.00213 0.3

Mf 75,555 1.09804 0 2 0 0 0 0 0 0 -2 0 -2 -0.00019 0.6 -0.00213 6.3
75,565 1.10024 0 2 0 0 1 0 0 0 -2 0 -1 -0.00019 0.2 -0.00213 2.6
75,575 1.10245 0 2 0 0 2 0 0 0 -2 0 0 -0.00019 0.0 -0.00213 0.2

Mstm 83,655 1.56956 0 3 -2 1 0 0 1 0 -2 -2 -2 -0.00065 0.1 -0.00202 0.2
Mtm 85,455 1.64241 0 3 0 -1 0 0 -1 0 -2 0 -2 -0.00071 0.4 -0.00201 1.1

85,465 1.64462 0 3 0 -1 1 0 -1 0 -2 0 -1 -0.00071 0.2 -0.00201 0.5
Msqm 93,555 2.11394 0 4 -2 0 0 0 0 0 -2 -2 -2 -0.00102 0.1 -0.00193 0.2
Mqm 95,355 2.18679 0 4 0 -2 0 0 -2 0 -2 0 -2 -0.00106 0.1 -0.00192 0.1

Table 6.5c: Amplitudes (A2δkfHf ) of the corrections for frequency dependence of k
(0)
22 , taking the

nominal value k22 for the sectorial tides as (0.30102 − i 0.00130). Units: 10−12. The
corrections are only to the real part.

Name Doodson deg/hr τ s h p N ′ ps ` `′ F D Ω δkRf Amp.

No.

N2 245,655 28.43973 2 -1 0 1 0 0 1 0 2 0 2 0.00006 -0.3
M2 255,555 28.98410 2 0 0 0 0 0 0 0 2 0 2 0.00004 -1.2

6.2.2 Treatment of the permanent tide

The degree 2 zonal tide generating potential has a mean (time average) value that is nonzero. This
time independent (nm) = (20) potential produces a permanent deformation and a consequent
time independent contribution to the geopotential coefficient C̄20. In formulating a geopotential
model, two approaches may be taken (see Chapter 1). When the time independent contribution is
included in the adopted value of C̄20, then the value is termed “zero tide” and will be noted here
C̄zt20. If the time independent contribution is not included in the adopted value of C̄20, then the

value is termed “conventional tide free” and will be noted here C̄tf20 .

In the case of a “zero tide” geopotential model, the model of tidal effects to be added should
not once again contain a time independent part. One must not then use the expression (6.6) as
it stands for modeling ∆C̄20; its permanent part must first be restored. This is Step 3 of the
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computation, which provides ∆C̄zt20, to be used with a “zero tide” geopotential model.

∆C̄zt20 = ∆C̄20 −∆C̄perm20 (6.13)

where ∆C̄20 is given by Equation (6.6) and where ∆C̄perm20 is the time-independent part:

∆C̄perm20 = A0H0k20 = (4.4228× 10−8)(−0.31460)k20. (6.14)

In the case of EGM2008, the difference between the zero-tide and tide-free value of C20 is −4.1736×
10−9. Assuming the same values for A0, H0 and k20, the tide-free value of C20 corresponding to
Table 6.2 would be −0.48416531× 10−3.

The use of “zero tide” values and the subsequent removal of the effect of the permanent tide from
the tide model is presented for consistency with the 18th IAG General Assembly Resolution 16.

6.3 Effect of the ocean tides

The dynamical effects of ocean tides are most easily incorporated as periodic variations in the
normalized Stokes’ coefficients of degree n and order m ∆C̄nm and ∆S̄nm. These variations can
be evaluated as

[∆C̄nm − i∆S̄nm](t) =
∑
f

−∑
+

(C±f,nm ∓ iS
±
f,nm)e±iθf (t), (6.15)

where C±f,nm and S±f,nm are the geopotential harmonic amplitudes (see more information below)
for the tide constituent f , and where θf (t) is the argument of the tide constituent f as defined in
the explanatory text below Equation (6.8e).

Ocean tide models are typically developed and distributed as gridded maps of tide height ampli-
tudes. These models provide in-phase and quadrature amplitudes of tide heights for selected, main
tidal frequencies (or main tidal waves), on a variable grid spacing over the oceans. Using stan-
dard methods of spherical harmonic decomposition and with the use of an Earth loading model,
the maps of ocean tide height amplitudes have been converted to spherical harmonic coefficients
of the geopotential, and provided for direct use in Equation (6.15). This computation follows
Equation (6.21) and has been carried out for the tide model proposed in Section 6.3.2.

Typically, an ocean tide model provides maps for only the largest tides or main waves. The
spectrum of tidal geopotential perturbations can be completed by interpolation from the main
waves to the smaller, secondary waves, using an assumption of linear variation of tidal admittance
between closely spaced tidal frequencies. For each secondary wave, the geopotential harmonic
amplitudes can be derived from the amplitudes of two nearby main lines, or pivot waves, (labeled
with subscripts 1 and 2) as

C±f,nm =
θ̇f−θ̇1
θ̇2−θ̇1

.
Hf

H2
C±2,nm +

θ̇2−θ̇f
θ̇2−θ̇1

.
Hf

H1
C±1,nm

S±f,nm =
θ̇f−θ̇1
θ̇2−θ̇1

.
Hf

H2
S±2,nm +

θ̇2−θ̇f
θ̇2−θ̇1

.
Hf

H1
S±1,nm

(6.16)

where H is the astronomic amplitude of the considered wave. See an example in Table 6.7 developed
for the main waves of FES2004 (see Section 6.3.2).

Some background information on the determination of the coefficients is given in Section 6.3.1, and
is included here for completeness. It is not necessary for the evaluation of tidal perturbations to
the geopotential. Information on selected tidal models and their use is provided in Section 6.3.2.
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6.3.1 Background on ocean tide models

Ocean tide models are conventionally expressed in terms of amplitude and phase of waves at certain
discrete frequencies.

ξ(φ, λ, t) =
∑
f

Zf (φ, λ) cos (θf (t)− ψf (φ, λ)) (6.17)

where Zf is the amplitude of wave f, ψf is the phase at Greenwich and θf is the Doodson argument,
see the explanatory text below Equation (6.8e).

When expanding amplitudes (Zf ) and phases (ψf ) of the different waves of tides (from cotidal
grids) in spherical harmonic functions of Zfcos(ψf ) and Zfsin(ψf ), it yields:

ξ(φ, λ, t) =
∑
f

N∑
n=1

n∑
m=0

P̄nm(sinφ)

−∑
+

ξ±f,nm(λ, t) (6.18)

where

ξ±f,nm(λ, t) = C̄±f,nm cos(θf + χf ±mλ) + S̄±f,nm sin(θf + χf ±mλ) (6.19)

The couples of coefficients
(
C̄±f,nm, S̄

±
f,nm

)
represent prograde and retrograde normalized spherical

harmonic coefficients of the main wave f at degree n and order m, and can be alternately expressed

in terms of amplitude ˆ̄C±f,nm and phase ε±f,nm such as:

C̄±f,nm = ˆ̄C±f,nm sin(ε±f,nm)

S̄±f,nm = ˆ̄C±f,nm cos(ε±f,nm)
(6.20)

The χf values agree with the so-called Shureman convention which is traditionally applied in
cotidal maps. They comply with the Doodson-Warburg convention which is defined according to
the sign of the harmonic amplitude Hf (see Table 6.6 according to Cartwright and Eden, 1973).

Table 6.6: Values of the phase bias χf according to the sign of Hf

Hf > 0 Hf < 0
n1=0, long period wave π 0
n1=1, diurnal wave π

2 −π2
n1=2, semi-diurnal wave 0 π

For each wave f , the coefficients C±f,nm and S±f,nm to be used in Equation (6.15) can be computed
as

C±f,nm = 4πGρw
ge

(
1+k′n
2n+1

)
ˆ̄C±f,nm sin(ε±f,nm + χf )

S±f,nm = 4πGρw
ge

(
1+k′n
2n+1

)
ˆ̄C±f,nm cos(ε±f,nm + χf )

(6.21)

where G and ge are given in Chapter 1, ρw is the density of seawater (1025 kg m−3) and where k′n
is the load deformation coefficient of degree n (k′2 =−0.3075, k′3 =−0.195, k′4 =−0.132, k′5 =−0.1032,
k′6 =−0.0892).
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6.3.2 Ocean tide models

The practical implementation of ocean tide models in this form begins with identification of the
underlying ocean tide height model. Once this model is identified, further needed information can
include the specification of maximum degree and order of the expansion, the identification of the
pivot waves for interpolation, the special handling (if necessary) of the solar (radiational) tides, or
the long-period tidal bands.

For the case of the FES2004 ocean tide model, these details of implementation are provided next.

FES2004

The FES2004 ocean tide model (Lyard et al., 2006) includes long period waves (Sa, Ssa, Mm, Mf ,
Mtm, Msqm), diurnal waves (Q1, O1, P1, K1), semi-diurnal waves (2N2, N2, M2, T2, S2, K2) and
the quarter-diurnal wave (M4

6). For direct use in Equation (6.15), the coefficients C±f,nm and

S±f,nm for the main tidal waves of FES2004 can be found at <7>. Note that, for zonal terms,

FES2004 takes the approach to set the retrograde coefficients C−f,n0 and S−f,n0 to zero and to double

the prograde coefficients C+
f,n0 and S+

f,n0. Therefore, after applying Equation (6.15), the ∆C̄n0

have the expected value but the ∆S̄n0 must be set to zero.
2012/08/10

The tide height coefficients can be found in the file <8> , both in the form of the coefficients C̄±f,nm

and S̄±f,nm and in the form of the amplitudes ˆ̄C±f,nm and phases ε±f,nm, as defined in Equations (6.19)
and (6.20). They have been computed up to degree and order 100 by quadrature method from
quarter-degree cotidal grids. Then ellipsoidal corrections to spherical harmonics were applied
(Balmino, 2003) in order to take into account that tidal models are described on the oblate shape
of the Earth.

Table 6.7 provides a list of admittance waves which can be taken into account to complement the
model. It indicates the pivot waves for linear interpolation following Equation (6.16), where indices
1 and 2 refer to the two pivot waves.

It is to be noticed that radiational waves like S1 and S2 require special handling, since the common
altimetric models (including FES2004) for these tides include the contributions of atmospheric
pressure variations on the ocean height (i.e. the radiational tide). As a result, neither S1 and S2

are used as pivot waves for interpolation in Table 6.7. While an S2 wave is available as a part of
the FES2004 model, a mean S1 wave is given outside FES2004 and available in file <9>.

The additionally provided mean S1 wave should only be used in case the gravitational influences
of mass transport from an ocean circulation model like MOG2D (Carrère and Lyard, 2003) are
not also modeled. This is because the S1 signal is generally part of such ocean circulation models
provided with an interval of 6 hours.

Moreover, very long period waves like Ω1 (18.6 yr) and Ω2 (9.3 yr) which are not yet correctly
observed can be modeled as equilibrium waves. Their amplitudes (and phases) are computed from
the astronomical amplitude Hf considering the elastic response of the Earth through the Love
numbers:

ˆ̄Cf,20 =
1 + k2 − h2√

4π
|Hf |, εf,20 =

π

2
2011/09/23

where k2 = 0.29525 and h2 = 0.6078 are the Love numbers of potential and deformation, respec-
tively. Note that there is an ongoing discussion on whether the phase change to π

2 in the equation
above, introduced in the update dated 2011/09/23, is justified.

2011/10/14

6The χ value for M4, not given in Table 6.6, is 0
7ftp://tai.bipm.org/iers/conv2010/chapter6/tidemodels/fes2004_Cnm-Snm.dat
8ftp://tai.bipm.org/iers/conv2010/chapter6/tidemodels/fes2004.dat
9ftp://tai.bipm.org/iers/conv2010/chapter6/tidemodels/S1.dat
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Influence of tidal models

For a satellite like Stella (altitude 800 km, inclination 98.7◦ and eccentricity 0.001), for one day
of integration, the effects of ocean tides are typically of order several cm and can reach 20 cm.
It is estimated that the main waves of the FES2004 model typically represent 80% of the effect
(Biancale, 2008).

For Starlette (altitude 800 km, inclination 49.8◦ and eccentricity 0.02) and Lageos1 (altitude 5900
km, inclination 109.8◦ and eccentricity 0.005), integration time of 6 and 7 days, respectively, showed
a 3-D RMS difference (mostly along-track) of 9 and 7 mm, respectively, for the difference between
FES2004 and the older CSR3.0 ocean tide model (Ries, 2010).

Table 6.7: List of astronomical amplitudes Hf (m) for main waves
of FES2004 (in bold) and for some secondary waves (with their
pivot waves when they have to be linearly interpolated).

Darwin’s symbol Doodson’s number Hf Pivot wave 1 Pivot wave 2
Ω1 055.565 .02793
Ω2 055.575 -.00027
Sa 056.554 -.00492

Ssa 057.555 -.03100
Sta 058.554 -.00181 057.555 065.455

Msm 063.655 -.00673 057.555 065.455
065.445 .00231 057.555 065.455

Mm 065.455 -.03518
065.465 .00229 065.455 075.555
065.555 -.00375 065.455 075.555
065.655 .00188 065.455 075.555

Msf 073.555 -.00583 065.455 075.555
075.355 -.00288 065.455 075.555

Mf 075.555 -.06663
075.565 -.02762 075.555 085.455
075.575 -.00258 075.555 085.455

Mstm 083.655 -.00242 075.555 085.455
083.665 -.00100 075.555 085.455

Mtm 085.455 -.01276
085.465 -.00529 085.455 093.555

Msqm 093.555 -.00204
095.355 -.00169 085.455 093.555
117.655 -.00194 135.455 145.555

2Q1 125.755 -.00664 135.655 145.555
σ1 127.555 -.00802 135.655 145.555
σ1 135.645 -.00947 135.655 145.555
Q1 135.655 -.05020

137.445 -.00180 135.655 145.555
ρ1 137.455 -.00954 135.655 145.555

145.545 -.04946 135.655 145.555
O1 145.555 -.26221

145.755 .00170 145.555 165.555
τ1 147.555 .00343 145.555 165.555

153.655 .00194 145.555 165.555
155.455 .00741 145.555 165.555
155.555 -.00399 145.555 165.555

M1 155.655 .02062 145.555 165.555
155.665 .00414 145.555 165.555

χ1 157.455 .00394 145.555 165.555
continued
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Darwin’s symbol Doodson’s number Hf Pivot wave 1 Pivot wave 2
π1 162.556 -.00714 145.555 165.555
P1 163.555 -.12203
S1 164.556 .00289

K1− 165.545 -.00730 145.555 165.555
K1 165.555 .36878
K1+ 165.565 .05001 145.555 165.555
ψ1 166.554 .00293 145.555 165.555
ϕ1 167.555 .00525 145.555 165.555
θ1 173.655 .00395 145.555 165.555
J1 175.455 .02062 145.555 165.555

175.465 .00409 145.555 165.555
So1 183.555 .00342 145.555 165.555

185.355 .00169 145.555 165.555
Oo1 185.555 .01129 145.555 165.555

185.565 .00723 145.555 165.555
ν1 195.455 .00216 145.555 165.555

3N2 225.855 .00180 235.755 245.655
ε2 227.655 .00467 235.755 245.655

2N2 235.755 .01601
µ2 237.555 .01932 235.755 245.655

245.555 -.00389 237.755 245.655
245.645 -.00451 237.755 245.655

N2 245.655 .12099
ν2 247.455 .02298 245.655 255.555
γ2 253.755 -.00190 245.655 255.555
α2 254.556 -.00218 245.655 255.555

255.545 -.02358 245.655 255.555
M2 255.555 .63192
β2 256.554 .00192 255.555 275.555
λ2 263.655 -.00466 255.555 275.555
L2 265.455 -.01786 255.555 275.555

265.555 .00359 255.555 275.555
265.655 .00447 255.555 275.555
265.665 .00197 255.555 275.555

T2 272.556 .01720 255.555 275.555
S2 273.555 .29400
R2 274.554 -.00246 255.555 275.555
K2 275.555 .07996
K2+ 275.565 .02383 255.555 275.555
K2++ 275.575 .00259 255.555 275.555

η2 285.455 .00447 255.555 275.555
285.465 .00195 255.555 275.555

M4 455.555

6.4 Solid Earth pole tide

The pole tide is generated by the centrifugal effect of polar motion, characterized by the potential

∆V (r, θ, λ) = −Ω2r2

2 sin 2θ (m1 cosλ+m2 sinλ)

= −Ω2r2

2 sin 2θ Re [(m1 − im2) eiλ].
(6.22)

(See Section 7.1.4 for further details, including the relation of the wobble variables (m1,m2) to
the polar motion variables (xp, yp).) The deformation which constitutes this tide produces a
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perturbation

−Ω2r2

2
sin 2θ Re [k2 (m1 − im2) eiλ]

in the external potential, which is equivalent to changes in the geopotential coefficients C21 and
S21. Using for k2 the value 0.3077 + 0.0036 i appropriate to the polar tide yields

∆C̄21 = −1.333× 10−9(m1 + 0.0115m2),

∆S̄21 = −1.333× 10−9(m2 − 0.0115m1),

where m1 and m2 are in seconds of arc.

6.5 Ocean pole tide

The ocean pole tide is generated by the centrifugal effect of polar motion on the oceans. This
centrifugal effect is defined in Equation (6.22) from Section 6.4. Polar motion is dominated by the
14-month Chandler wobble and annual variations. At these long periods, the ocean pole tide is
expected to have an equilibrium response, where the displaced ocean surface is in equilibrium with
the forcing equipotential surface.

Desai (2002) presents a self-consistent equilibrium model of the ocean pole tide. This model ac-
counts for continental boundaries, mass conservation over the oceans, self-gravitation, and loading
of the ocean floor. Using this model, the ocean pole tide produces the following perturbations to
the normalized geopotential coefficients, as a function of the wobble variables (m1,m2).

[
∆C̄nm
∆S̄nm

]
= Rn

{[
ĀRnm
B̄Rnm

] (
m1γ

R
2 +m2γ

I
2

)
+

[
ĀInm
B̄Inm

] (
m2γ

R
2 −m1γ

I
2

)}
(6.23a)

where

Rn =
Ω2a4

E

GM

4πGρw
ge

(
1 + k′n
2n+ 1

)
(6.23b)

and
Ω, aE , GM , ge, and G are defined in Chapter 1,
ρw = density of sea water = 1025 kgm−3,
k′n = load deformation coefficients (k′2 = −0.3075, k′3 = −0.195, k′4 = −0.132, k′5 = −0.1032, k′6 =
−0.0892),
γ = γR2 + iγI2 = (1 + k2 − h2) = 0.6870 + i0.0036

(Values of k2 and h2 appropriate for the pole tide are as given in sections 6.4 and 7.1.4),
(m1,m2) are the wobble parameters in radians. Refer to Section 7.1.4 for the relationship between
the wobble variables (m1,m2) and the polar motion variable (xp, yp).
The coefficients from the self-consistent equilibrium model, Ānm = ĀRnm + iĀInm and B̄nm =
B̄Rnm + iB̄Inm, are provided to degree and order 360 at <10>.

The (n,m) = (2, 1) coefficients are the dominant terms of the ocean pole tide. Using the values
defined above yields the following (n,m) = (2, 1) coefficients for the ocean pole tide:

∆C̄21 = −2.1778× 10−10(m1 − 0.01724m2),
∆S̄21 = −1.7232× 10−10(m2 − 0.03365m1),

(6.24)

where m1 and m2 are in seconds of arc. Approximately 90% of the variance of the ocean pole tide
potential is provided by the degree n = 2 spherical harmonic components, with the next largest
contributions provided by the degree n = 1 and n = 3 components, respectively (see Figure 6.1).
Expansion to spherical harmonic degree n = 10 provides approximately 99% of the variance.
However, adequate representation of the continental boundaries will require a spherical harmonic
expansion to high degree and order. The degree n = 1 components are shown in Figure 6.1 to
illustrate the size of the ocean pole tide contribution to geocenter motion but these terms should
not be used in modeling station displacements.

10ftp://tai.bipm.org/iers/conv2010/chapter6/desaiscopolecoef.txt
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Figure 6.1: Ocean pole tide: first spherical harmonic components.
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6.6 Conversion of tidal amplitudes defined according to different
conventions

The definition used for the amplitudes of tidal terms in the recent high-accuracy tables differ
from each other and from Cartwright and Tayler (1971). Hartmann and Wenzel (1995) tabulate
amplitudes in units of the potential (m2s−2), while the amplitudes of Roosbeek (1996), which
follow the Doodson (1921) convention, are dimensionless. To convert them to the equivalent
tide heights Hf of the Cartwright-Tayler convention, multiply by the appropriate factors from
Table 6.5. The following values are used for the constants appearing in the conversion factors:
Doodson constant D1 = 2.63358352855 m2 s−2; ge ≡ g at the equatorial radius = 9.79828685
(from GM = 3.986004415× 1014 m3 s−2, Re = 6378136.55 m).

Table 6.8: Factors for conversion to Cartwright-Tayler amplitudes from those defined according to
Doodson’s and Hartmann and Wenzel’s conventions.

From Doodson From Hartmann & Wenzel

f20 = −
√

4π√
5
D1

ge
= −0.426105 f ′20 = 2

√
π

ge
= 0.361788

f21 = − 2
√

24π
3
√

5
D1

ge
= −0.695827 f ′21 = −

√
8π
ge

= −0.511646

f22 =
√

96π
3
√

5
D1

ge
= 0.695827 f ′22 =

√
8π
ge

= 0.511646

f30 = −
√

20π√
7

D1

ge
= −0.805263 f ′30 = 2

√
π

ge
= 0.361788

f31 =
√

720π
8
√

7
D1

ge
= 0.603947 f ′31 =

√
8π
ge

= 0.511646

f32 =
√

1440π
10
√

7
D1

ge
= 0.683288 f ′32 =

√
8π
ge

= 0.511646

f33 = −
√

2880π
15
√

7
D1

ge
= −0.644210 f ′33 = −

√
8π
ge

= −0.511646
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Mayer-Gürr, T., “ITG-Grace03s: The latest GRACE gravity field solution computed in Bonn,”
Joint International GSTM and DFG SPP Symposium Potsdam, 15-17 October 2007, see

http://www.igg.uni-bonn.de/apmg/fileadmin/DatenModelle/media/mayer-guerr_gstm_

potsdam_2007.pdf.

Nerem, R. S., Chao, B. F., Au, A. Y., Chan, J. C., Klosko, S. M., Pavlis, N. K. and Williamson, R.
G., 1993, “Temporal variations of the Earth’s gravitational field from satellite laser ranging
to Lageos,” Geophys. Res. Lett., 20(7), pp. 595–598, doi: 10.1029/93GL00169.

Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K., 2008, “An Earth gravitational
model to degree 2160: EGM2008,” presented at the 2008 General Assembly of the European
Geosciences Union, Vienna, Austria, April 13-18, 2008, see

http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/NPavlis&al_EGU2008.ppt.

Ray, R. D. and Cartwright, D. E., 1994, “Satellite altimeter observations of the Mf and Mm

ocean tides, with simultaneous orbit corrections,” Gravimetry and Space Techniques Applied
to Geodynamics and Ocean Dynamics, Geophysical Monograph 82, IUGG Volume 17, pp.
69–78.

Ries, J.C., 2010, personal communication.

Roosbeek, F., 1996, “RATGP95: a harmonic development of the tide-generating potential us-
ing an analytical method,” Geophys. J. Int., 126(1), pp. 197–204, doi: 10.1111/j.1365-
246X.1996.tb05278.x.

Schwiderski, E., 1983, “Atlas of ocean tidal charts and maps, Part I: The semidiurnal principal
lunar tide M2,” Mar. Geod., 6(3-4), pp. 219–265, doi: 10.1080/15210608309379461.

Souchay, J. and Folgueira, M., 1998, “The effect of zonal tides on the dynamical ellipticity of the
Earth and its influence on the nutation,” Earth, Moon and Planets, 81(3), pp. 201–216, doi:
10.1023/A:1006331511290.

Wahr, J. M., 1981, “The forced nutations of an elliptical, rotating, elastic, and oceanless Earth,”
Geophys. J. Roy. Astron. Soc., 64(3), pp. 705–727, doi: 10.1111/j.1365-246X.1981.tb02691.x.

Wahr, J., 1987, “The Earth’s C21 and S21 gravity coefficients and the rotation of the core,” Geo-
phys. J. Roy. astr. Soc., 88, pp. 265–276.

Wahr, J. M. and Sasao, T., 1981, “A diurnal resonance in the ocean tide and the Earth’s load
response due to the resonant free “core nutation”,” Geophys. J. Roy. astr. Soc., 64, pp.
747–765.

Wahr, J., 1990, “Corrections and update to ‘The Earth’s C21 and S21 gravity coefficients and the
rotation of the core’,” Geophys. J. Int., 101, pp. 709–711.

Wahr, J. and Bergen, Z., 1986, “The effects of mantle elasticity on nutations, Earth tides, and
tidal variations in the rotation rate,” Geophys. J. Roy. astr. Soc., 87, 633–668.

Widmer, R., Masters, G., and Gilbert, F., 1991, “Spherically symmetric attenuation within the
Earth from normal mode data,” Geophys. J. Int., 104, pp. 541–553.

20

http://www.igg.uni-bonn.de/apmg/fileadmin/DatenModelle/media/mayer-guerr_gstm_potsdam_2007.pdf
http://www.igg.uni-bonn.de/apmg/fileadmin/DatenModelle/media/mayer-guerr_gstm_potsdam_2007.pdf
http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/NPavlis&al_EGU2008.ppt

	Geopotential (01 February 2018)
	Conventional model based on the EGM2008 model
	Effect of solid Earth tides
	Conventional model for the solid Earth tides 
	Treatment of the permanent tide 

	Effect of the ocean tides 
	Background on ocean tide models 
	Ocean tide models 

	Solid Earth pole tide
	Ocean pole tide 
	Conversion of tidal amplitudes defined according to different conventions


